Gerhard Winter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10724445/publications.pdf

Version: 2024-02-01

179	7,779	46	80
papers	citations	h-index	g-index
181	181	181	7801 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Overlooking Subvisible Particles in Therapeutic Protein Products: Gaps That May Compromise Product Quality. Journal of Pharmaceutical Sciences, 2009, 98, 1201-1205.	3.3	492
2	Protein Instability and Immunogenicity: Roadblocks to Clinical Application of Injectable Protein Delivery Systems for Sustained Release. Journal of Pharmaceutical Sciences, 2012, 101, 946-954.	3.3	205
3	Thermosensitive liposomal drug delivery systems: state of the art review. International Journal of Nanomedicine, 2014, 9, 4387.	6.7	203
4	Particles in Therapeutic Protein Formulations, Part 1: Overview of Analytical Methods. Journal of Pharmaceutical Sciences, 2012, 101, 914-935.	3.3	191
5	Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: Essential need to use orthogonal methods to assure the quality of therapeutic protein products. Journal of Pharmaceutical Sciences, 2010, 99, 2200-2208.	3.3	185
6	Microencapsulation of rh-erythropoietin, using biodegradable poly(d,l-lactide-co-glycolide): protein stability and the effects of stabilizing excipients. European Journal of Pharmaceutics and Biopharmaceutics, 1997, 43, 29-36.	4.3	183
7	The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58, 369-383.	4.3	182
8	Quantitation of Aggregate Levels in a Recombinant Humanized Monoclonal Antibody Formulation by Size-Exclusion Chromatography, Asymmetrical Flow Field Flow Fractionation, and Sedimentation Velocity. Journal of Pharmaceutical Sciences, 2007, 96, 268-279.	3.3	157
9	Targeting CpG Oligonucleotides to the Lymph Node by Nanoparticles Elicits Efficient Antitumoral Immunity. Journal of Immunology, 2008, 181, 2990-2998.	0.8	150
10	Protein stabilization by cyclodextrins in the liquid and dried state. Advanced Drug Delivery Reviews, 2011, 63, 1086-1106.	13.7	150
11	Lyophilized Drug Product Cake Appearance: What Is Acceptable?. Journal of Pharmaceutical Sciences, 2017, 106, 1706-1721.	3.3	145
12	Recombinant spider silk particles as drug delivery vehicles. Biomaterials, 2011, 32, 2233-2240.	11.4	137
13	Recent advances and further challenges in lyophilization. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 162-169.	4.3	135
14	Microbubbles as ultrasound triggered drug carriers. Journal of Pharmaceutical Sciences, 2009, 98, 1935-1961.	3.3	133
15	New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: In-vivo characterization. Journal of Controlled Release, 2010, 148, 368-372.	9.9	133
16	Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 1-9.	4.3	124
17	Delivery by Cationic Gelatin Nanoparticles Strongly Increases the Immunostimulatory Effects of CpG Oligonucleotides. Pharmaceutical Research, 2008, 25, 551-562.	3.5	117
18	Micro–Flow Imaging and Resonant Mass Measurement (Archimedes) – Complementary Methods to Quantitatively Differentiate Protein Particles and Silicone Oil Droplets. Journal of Pharmaceutical Sciences, 2013, 102, 2152-2165.	3.3	115

#	Article	IF	Citations
19	Erythropoietin loaded microspheres prepared from biodegradable LPLG–PEO–LPLG triblock copolymers: protein stabilization and in-vitro release properties. Journal of Controlled Release, 1998, 56, 105-115.	9.9	108
20	Trends on Analytical Characterization of Polysorbates and Their Degradation Products in Biopharmaceutical Formulations. Journal of Pharmaceutical Sciences, 2017, 106, 1722-1735.	3.3	108
21	Size of thermosensitive liposomes influences content release. Journal of Controlled Release, 2010, 147, 436-443.	9.9	106
22	Asymmetrical Flow Field-Flow Fractionation and Multiangle Light Scattering for Analysis of Gelatin Nanoparticle Drug Carrier Systems. Analytical Chemistry, 2004, 76, 1909-1920.	6.5	105
23	Recombinant human erythropoietin (rhEPO) loaded poly(lactide-co-glycolide) microspheres: influence of the encapsulation technique and polymer purity on microsphere characteristics. European Journal of Pharmaceutics and Biopharmaceutics, 1998, 45, 295-305.	4.3	103
24	Processing Conditions for the Formation of Spider Silk Microspheres. ChemSusChem, 2008, 1, 413-416.	6.8	103
25	Formulation of Proteins in Vacuum-Dried Glasses. II. Process and Storage Stability in Sugar-Free Amino Acid Systems. Pharmaceutical Development and Technology, 1999, 4, 199-208.	2.4	101
26	Ultrasound Targeted Microbubble Destruction Increases Capillary Permeability in Hepatomas. Ultrasound in Medicine and Biology, 2007, 33, 1592-1598.	1.5	98
27	Inhibition of Agitationâ€Induced Aggregation of an IgGâ€Antibody by Hydroxypropylâ€Î²â€Cyclodextrin. Journal of Pharmaceutical Sciences, 2010, 99, 1193-1206.	3.3	95
28	Recombinant spider silk particles for controlled delivery of protein drugs. Biomaterials, 2012, 33, 1554-1562.	11.4	94
29	Flow Imaging Microscopy for Protein Particle Analysis—A Comparative Evaluation of Four Different Analytical Instruments. AAPS Journal, 2013, 15, 1200-1211.	4.4	90
30	How Subvisible Particles Become Invisibleâ€"Relevance of the Refractive Index for Protein Particle Analysis. Journal of Pharmaceutical Sciences, 2013, 102, 1434-1446.	3.3	88
31	New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: Part I — Formulation development and in-vitro characterization. Journal of Controlled Release, 2010, 143, 143-150.	9.9	86
32	Comparison of the Effects of Early Pregnancy with Human Interferon, Alpha 2 (IFNA2), on Gene Expression in Bovine Endometrium1. Biology of Reproduction, 2012, 86, 46.	2.7	86
33	Stress-responsive FKBP51 regulates AKT2-AS160 signaling and metabolic function. Nature Communications, 2017, 8, 1725.	12.8	82
34	Protein stability in pulmonary drug delivery via nebulization. Advanced Drug Delivery Reviews, 2015, 93, 79-94.	13.7	81
35	Controlled shielding and deshielding of gene delivery polyplexes using hydroxyethyl starch (HES) and alpha-amylase. Journal of Controlled Release, 2012, 159, 92-103.	9.9	78
36	Recent insights into cutaneous immunization: How to vaccinate via the skin. Vaccine, 2015, 33, 4663-4674.	3.8	78

#	Article	IF	CITATIONS
37	Novel microscale approaches for easy, rapid determination of protein stability in academic and commercial settings. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 2241-2250.	2.3	76
38	Influence of particle geometry and PEGylation on phagocytosis of particulate carriers. International Journal of Pharmaceutics, 2014, 465, 159-164.	5.2	74
39	The effect of molar mass and degree of hydroxyethylation on the controlled shielding and deshielding of hydroxyethyl starch-coated polyplexes. Biomaterials, 2013, 34, 2530-2538.	11.4	68
40	Investigation of the Immunogenicity of Different Types of Aggregates of a Murine Monoclonal Antibody in Mice. Pharmaceutical Research, 2015, 32, 430-444.	3.5	66
41	Mechanisms controlling protein release from lipidic implants: Effects of PEG addition. Journal of Controlled Release, 2007, 118, 161-168.	9.9	63
42	Systematic Investigation of the Effect of Lyophilizate Collapse on Pharmaceutically Relevant Proteins, Part 2: Stability During Storage at Elevated Temperatures. Journal of Pharmaceutical Sciences, 2012, 101, 2288-2306.	3.3	63
43	Protein HESylation for half-life extension: Synthesis, characterization and pharmacokinetics of HESylated anakinra. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 378-385.	4.3	62
44	Continuous release of rh-interferon α-2a from triglyceride matrices. Journal of Controlled Release, 2004, 97, 67-78.	9.9	59
45	Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications. Expert Opinion on Drug Delivery, 2015, 12, 481-492.	5.0	58
46	Lipid extrudates as novel sustained release systems for pharmaceutical proteins. Journal of Controlled Release, 2009, 134, 177-185.	9.9	55
47	Calcium Alginate Gels as Stem Cell Matrix – Making Paracrine Stem Cell Activity Available for Enhanced Healing after Surgery. PLoS ONE, 2015, 10, e0118937.	2.5	51
48	Formulation development of freeze-dried oligonucleotide-loaded gelatin nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 514-521.	4.3	48
49	Application of interpretable artificial neural networks to early monoclonal antibodies development. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 141, 81-89.	4.3	48
50	The stress regulator FKBP51: a novel and promising druggable target for the treatment of persistent pain states across sexes. Pain, 2018, 159, 1224-1234.	4.2	46
51	Engineered hybrid spider silk particles as delivery system for peptide vaccines. Biomaterials, 2018, 172, 105-115.	11.4	44
52	A Nebulized Gelatin Nanoparticle-Based CpG Formulation is Effective in Immunotherapy of Allergic Horses. Pharmaceutical Research, 2012, 29, 1650-1657.	3.5	42
53	Method for Quantifying the PEGylation of Gelatin Nanoparticle Drug Carrier Systems Using Asymmetrical Flow Field-Flow Fractionation and Refractive Index Detection. Analytical Chemistry, 2007, 79, 4574-4580.	6.5	40
54	Can Controlled Ice Nucleation Improve Freezeâ€Drying of Highlyâ€Concentrated Protein Formulations?. Journal of Pharmaceutical Sciences, 2013, 102, 3915-3919.	3.3	39

#	Article	IF	CITATIONS
55	Isothermal chemical denaturation as a complementary tool to overcome limitations of thermal differential scanning fluorimetry in predicting physical stability of protein formulations. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 125, 106-113.	4.3	38
56	Application of different analytical methods for the characterization of non-spherical micro- and nanoparticles. International Journal of Pharmaceutics, 2013, 453, 620-629.	5.2	37
57	The Role of Polysorbate 80 and HPβCD at the Air-Water Interface of IgG Solutions. Pharmaceutical Research, 2013, 30, 117-130.	3.5	36
58	Continuous measurement of drying rate of crystalline and amorphous systems during freezeâ€drying using an in situ microbalance technique. Journal of Pharmaceutical Sciences, 2001, 90, 1345-1355.	3.3	35
59	New Insight into the Role of Polyethylene Glycol Acting as Protein Release Modifier in Lipidic Implants. Pharmaceutical Research, 2007, 24, 1527-1537.	3.5	35
60	Formulation of proteins in vacuum-dried glasses. I: Improved vacuum-drying of sugars using crystallising amino acids. European Journal of Pharmaceutics and Biopharmaceutics, 1997, 44, 177-185.	4.3	32
61	A New Approach to Achieve Controlled Ice Nucleation of Supercooled Solutions During the Freezing Step in Freezeâ€Drying. Journal of Pharmaceutical Sciences, 2012, 101, 4409-4413.	3.3	31
62	Refixation of the supraspinatus tendon in a rat modelâ€"influence of continuous growth factor application on tendon structure. Journal of Orthopaedic Research, 2013, 31, 300-305.	2.3	31
63	Characterization of Lipid-Based Hexosomes as Versatile Vaccine Carriers. Molecular Pharmaceutics, 2016, 13, 3945-3954.	4.6	31
64	Dose Levels in Particulate-Containing Formulations Impact Anti-drug Antibody Responses to Murine Monoclonal Antibody in Mice. Journal of Pharmaceutical Sciences, 2015, 104, 1610-1621.	3.3	29
65	Pharmacological Modulation of the Psychiatric Risk Factor FKBP51 Alters Efficiency of Common Antidepressant Drugs. Frontiers in Behavioral Neuroscience, 2018, 12, 262.	2.0	29
66	Labelâ€Free Flow Cytometry Analysis of Subvisible Aggregates in Liquid IgG1 Antibody Formulations. Journal of Pharmaceutical Sciences, 2014, 103, 90-99.	3.3	28
67	Application of water-soluble polyvinyl alcohol-based film patches on laser microporated skin facilitates intradermal macromolecule and nanoparticle delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 128, 119-130.	4.3	28
68	Studies on the lipase induced degradation of lipid based drug delivery systems. Journal of Controlled Release, 2009, 140, 27-33.	9.9	26
69	Delivery of Immunostimulatory RNA Oligonucleotides by Gelatin Nanoparticles Triggers an Efficient Antitumoral Response. Journal of Immunotherapy, 2010, 33, 935-944.	2.4	26
70	Head to Head Comparison of the Formulation and Stability of Concentrated Solutions of HESylated versus PEGylated Anakinra. Journal of Pharmaceutical Sciences, 2015, 104, 515-526.	3.3	26
71	Optimisation of one-step desolvation and scale-up of gelatine nanoparticle production. Journal of Microencapsulation, 2016, 33, 595-604.	2.8	26
72	Orthogonal Techniques to Study the Effect of pH, Sucrose, and Arginine Salts on Monoclonal Antibody Physical Stability and Aggregation During Long-Term Storage. Journal of Pharmaceutical Sciences, 2020, 109, 584-594.	3.3	26

#	Article	IF	Citations
73	Water-based preparation of spider silk films as drug delivery matrices. Journal of Controlled Release, 2015, 213, 134-141.	9.9	25
74	Significant Drying Time Reduction Using Microwave-Assisted Freeze-Drying for a Monoclonal Antibody. Journal of Pharmaceutical Sciences, 2018, 107, 2538-2543.	3.3	25
75	Advancing Therapeutic Protein Discovery and Development through Comprehensive Computational and Biophysical Characterization. Molecular Pharmaceutics, 2020, 17, 426-440.	4.6	25
76	Towards an inhalative <i>in vivo</i> application of immunomodulating gelatin nanoparticles in horse-related preformulation studies. Journal of Microencapsulation, 2012, 29, 615-625.	2.8	24
77	That's cool! – Nebulization of thermolabile proteins with a cooled vibrating mesh nebulizer. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 357-365.	4.3	24
78	Silicone Oil-Free Polymer Syringes for the Storage of Therapeutic Proteins. Journal of Pharmaceutical Sciences, 2019, 108, 1148-1160.	3.3	24
79	Comparison of Different Liquid Chromatography-Based Purification Strategies for Adeno-Associated Virus Vectors. Pharmaceutics, 2021, 13, 748.	4. 5	24
80	Immunostimulation of bronchoalveolar lavage cells from recurrent airway obstruction-affected horses by different CpG-classes bound to gelatin nanoparticles. Veterinary Immunology and Immunopathology, 2011, 144, 79-87.	1.2	23
81	Influence of Hydroxypropylâ€Beta yclodextrin on the Stability of Dilute and Highly Concentrated Immunoglobulin G Formulations. Journal of Pharmaceutical Sciences, 2013, 102, 4121-4131.	3.3	23
82	Antibody Responses in Mice to Particles Formed from Adsorption of a Murine Monoclonal Antibody onto Glass Microparticles. Journal of Pharmaceutical Sciences, 2014, 103, 78-89.	3.3	23
83	Particle contamination of parenteralia and in-line filtration of proteinaceous drugs. International Journal of Pharmaceutics, 2015, 496, 250-267.	5.2	23
84	cmRNA/lipoplex encapsulation in PLGA microspheres enables transfection via calcium phosphate cement (CPC)/PLGA composites. Journal of Controlled Release, 2017, 249, 143-149.	9.9	23
85	Long-term release and stability of pharmaceutical proteins delivered from solid lipid implants. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 244-255.	4.3	23
86	Impact of plasma protein binding on cargo release by thermosensitive liposomes probed by fluorescence correlation spectroscopy. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 215-223.	4.3	23
87	CONTAMINATION OF ANTI-VEGF DRUGS FOR INTRAVITREAL INJECTION. Retina, 2018, 38, 2088-2095.	1.7	23
88	Nonspherical Nanoparticle Shape Stability Is Affected by Complex Manufacturing Aspects: Its Implications for Drug Delivery and Targeting. Advanced Healthcare Materials, 2019, 8, e1900352.	7.6	23
89	Vesicular phospholipid gels as drug delivery systems for small molecular weight drugs, peptides and proteins: State of the art review. International Journal of Pharmaceutics, 2019, 557, 1-8.	5.2	23
90	The ReFOLD assay for protein formulation studies and prediction of protein aggregation during long-term storage. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 137, 131-139.	4.3	22

#	ARTICLE	IF	Citations
91	High Throughput Prediction of the Long-Term Stability of Pharmaceutical Macromolecules from Short-Term Multi-Instrument Spectroscopic Data. Journal of Pharmaceutical Sciences, 2014, 103, 828-839.	3.3	21
92	Influence of particle size, an elongated particle geometry, and adjuvants on dendritic cell activation. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 542-549.	4.3	21
93	Cellular uptake of self-assembled phytantriol-based hexosomes is independent of major endocytic machineries. Journal of Colloid and Interface Science, 2019, 553, 820-833.	9.4	21
94	Current Approaches of Preservation of Cells During (freeze-) Drying. Journal of Pharmaceutical Sciences, 2021, 110, 2873-2893.	3.3	21
95	Mechanistic studies on the release of lysozyme from twin-screw extruded lipid implants. Journal of Controlled Release, 2012, 163, 187-194.	9.9	20
96	Prediction of protein degradation during vibrating mesh nebulization via a high throughput screening method. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 386-394.	4.3	20
97	New studies on leachables in commercial scale protein drug filling lines using stir bar sorptive extraction coupled with TD-GC–MS and UPLC/QTOF-MS/MS analytics. International Journal of Pharmaceutics, 2019, 555, 404-419.	5.2	20
98	Growth factor release by vesicular phospholipid gels: in-vitro results and application for rotator cuff repair in a rat model. BMC Musculoskeletal Disorders, 2015, 16, 82.	1.9	19
99	A New Approach to Study the Physical Stability of Monoclonal Antibody Formulations—Dilution From a Denaturant. Journal of Pharmaceutical Sciences, 2018, 107, 3007-3013.	3.3	19
100	Continuous Release of rh-Interferon \hat{l} ±-2a from Triglyceride Implants: Storage Stability of the Dosage Forms. Pharmaceutical Development and Technology, 2006, 11, 103-110.	2.4	18
101	Weak antibody–cyclodextrin interactions determined by quartz crystal microbalance and dynamic/static light scattering. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 781-789.	4.3	18
102	CMC determination of nonionic surfactants in protein formulations using ultrasonic resonance technology. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 92, 8-14.	4.3	18
103	Evaluation of a 3D Human Artificial Lymph Node as Test Model for the Assessment of Immunogenicity of Protein Aggregates. Journal of Pharmaceutical Sciences, 2019, 108, 2358-2366.	3.3	18
104	Microwave-Assisted Freeze-Drying of Monoclonal Antibodies: Product Quality Aspects and Storage Stability. Pharmaceutics, 2019, 11, 674.	4.5	18
105	Comparison of ice fog methods and monitoring of controlled nucleation success after freeze-drying. International Journal of Pharmaceutics, 2019, 558, 18-28.	5.2	18
106	The Role of Cyclodextrins against Interface-Induced Denaturation in Pharmaceutical Formulations: A Molecular Dynamics Approach. Molecular Pharmaceutics, 2021, 18, 2322-2333.	4.6	18
107	Immune responses induced by nano-self-assembled lipid adjuvants based on a monomycoloyl glycerol analogue after vaccination with the Chlamydia trachomatis major outer membrane protein. Journal of Controlled Release, 2018, 285, 12-22.	9.9	17
108	Intrinsic Differential Scanning Fluorimetry for Fast and Easy Identification of Adeno-Associated Virus Serotypes. Journal of Pharmaceutical Sciences, 2020, 109, 854-862.	3.3	17

#	Article	IF	Citations
109	Modulated Scanning Fluorimetry Can Quickly Assess Thermal Protein Unfolding Reversibility in Microvolume Samples. Molecular Pharmaceutics, 2020, 17, 2638-2647.	4.6	17
110	Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying. Journal of Pharmaceutical Sciences, 2017, 106, 1249-1257.	3.3	16
111	A comparison of nanoparticulate CpG immunotherapy with and without allergens in spontaneously equine asthmaâ€affected horses, an animal model. Immunity, Inflammation and Disease, 2018, 6, 81-96.	2.7	16
112	A Comparison of Controlled Ice Nucleation Techniques for Freeze-Drying of a Therapeutic Antibody. Journal of Pharmaceutical Sciences, 2018, 107, 2748-2754.	3.3	16
113	NIR spectroscopyâ€"a non-destructive analytical tool for protein quantification within lipid implants. Journal of Controlled Release, 2006, 114, 261-267.	9.9	15
114	A critical evaluation of microcalorimetry as a predictive tool for long term stability of liquid protein formulations: Granulocyte Colony Stimulating Factor (GCSF). European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 145-155.	4.3	15
115	Two Decades of Publishing Excellence in Pharmaceutical Biotechnology. Journal of Pharmaceutical Sciences, 2015, 104, 290-300.	3.3	15
116	Stability of collapse lyophilized influenza vaccine formulations. International Journal of Pharmaceutics, 2015, 483, 131-141.	5.2	15
117	Generation, Characterization, and Quantitative Bioanalysis of Drug/Anti-drug Antibody Immune Complexes to Facilitate Dedicated In Vivo Studies. Pharmaceutical Research, 2019, 36, 129.	3.5	15
118	Rapid sample-saving biophysical characterisation and long-term storage stability of liquid interferon alpha2a formulations: Is there a correlation?. International Journal of Pharmaceutics, 2019, 562, 42-50.	5.2	15
119	Challenges for PEGylated Proteins and Alternative Half-Life Extension Technologies Based on Biodegradable Polymers. ACS Symposium Series, 2013, , 215-233.	0.5	14
120	The "New Polyethylene Glycol Dilemma― Polyethylene Glycol Impurities and Their Paradox Role in mAb Crystallization. Journal of Pharmaceutical Sciences, 2015, 104, 1938-1945.	3.3	14
121	Quantitative detection of drug dose and spatial distribution in the lung revealed by Cryoslicing Imaging. Journal of Pharmaceutical and Biomedical Analysis, 2015, 102, 129-136.	2.8	14
122	In-vivo biodegradation of extruded lipid implants in rabbits. Journal of Controlled Release, 2012, 163, 195-202.	9.9	13
123	Pharmaceutical feasibility of sub-visible particle analysis in parenterals with reduced volume light obscuration methods. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1084-1087.	4.3	13
124	In vivo investigation of twin-screw extruded lipid implants for vaccine delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 338-346.	4.3	13
125	The effect of steam sterilization on recombinant spider silk particles. International Journal of Pharmaceutics, 2015, 481, 125-131.	5.2	13
126	Impact of implant composition of twin-screw extruded lipid implants on the release behavior. International Journal of Pharmaceutics, 2015, 493, 102-110.	5.2	12

#	Article	IF	Citations
127	Twin-screw extruded lipid implants containing TRP2 peptide for tumour therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 79-87.	4.3	12
128	Expanding Bedside Filtrationâ€"A Powerful Tool to Protect Patients From Protein Aggregates. Journal of Pharmaceutical Sciences, 2018, 107, 2775-2788.	3.3	12
129	Does controlled nucleation impact the properties and stability of lyophilized monoclonal antibody formulations?. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 134-144.	4.3	12
130	Binding of HSA to Macromolecular <i>p</i> HPMA Based Nanoparticles for Drug Delivery: An Investigation Using Fluorescence Methods. Langmuir, 2018, 34, 7998-8006.	3.5	12
131	Release pathways of interferon α2a molecules from lipid twin screw extrudates revealed by single molecule fluorescence microscopy. Journal of Controlled Release, 2012, 162, 295-302.	9.9	11
132	Toward intradermal vaccination: preparation of powder formulations by collapse freeze-drying. Pharmaceutical Development and Technology, 2014, 19, 213-222.	2.4	11
133	Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection. European Journal of Pharmaceutical Sciences, 2014, 63, 154-166.	4.0	11
134	Characterization and compatibility of hydroxyethyl starch–polyethylenimine copolymers for DNA delivery. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 855-871.	3.5	11
135	Thermo-Optical Protein Characterization for Straightforward Preformulation Development. Journal of Pharmaceutical Sciences, 2017, 106, 2955-2958.	3.3	11
136	Test models for the evaluation of immunogenicity of protein aggregates. International Journal of Pharmaceutics, 2019, 559, 192-200.	5.2	11
137	Immunomodulatory asthma therapy in the equine animal model: A doseâ€response study and evaluation of a longâ€term effect. Immunity, Inflammation and Disease, 2019, 7, 130-149.	2.7	11
138	⟨i⟩In vitro⟨ i⟩ effects of ⟨scp⟩C⟨ scp⟩p⟨scp⟩G⟨ scp⟩ oligodeoxynucleotides delivered by gelatin nanoparticles on canine peripheral blood mononuclear cells of atopic and healthy dogs â€" a pilot study. Veterinary Dermatology, 2013, 24, 494.	1.2	10
139	Stability and activity of hydroxyethyl starch-coated polyplexes in frozen solutions or lyophilizates. International Journal of Pharmaceutics, 2014, 469, 50-58.	5.2	10
140	Utilisation of antibody microarrays for the selection of specific and informative antibodies from recombinant library binders of unknown quality. New Biotechnology, 2016, 33, 574-581.	4.4	10
141	Needle-Free Injection of Vesicular Phospholipid Gels—A Novel Approach to Overcome an Administration Hurdle for Semisolid Depot Systems. Journal of Pharmaceutical Sciences, 2017, 106, 968-972.	3.3	10
142	Progress in formulation development and sterilisation of freeze-dried oligodeoxynucleotide-loaded gelatine nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 10-20.	4.3	10
143	Shape Characterization of Subvisible Particles Using Dynamic Imaging Analysis. Journal of Pharmaceutical Sciences, 2020, 109, 375-379.	3.3	10
144	Formulations That Suppress Aggregation During Long-Term Storage of a Bispecific Antibody are Characterized by High Refoldability and Colloidal Stability. Journal of Pharmaceutical Sciences, 2020, 109, 2048-2058.	3.3	10

#	Article	IF	CITATIONS
145	Studies on the lipase-induced degradation of lipid-based drug delivery systems. Part II $\hat{a} \in \text{``Investigations}$ on the mechanisms leading to collapse of the lipid structure. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 456-463.	4.3	9
146	Ultrasonic resonator technology as a new quality control method evaluating gelatin nanoparticles. Journal of Microencapsulation, 2010, 27, 242-252.	2.8	8
147	Combining Unfolding Reversibility Studies and Molecular Dynamics Simulations to Select Aggregation-Resistant Antibodies. Molecular Pharmaceutics, 2021, 18, 2242-2253.	4.6	8
148	Application of Tunable Resistive Pulse Sensing for the Quantification of Submicron Particles in Pharmaceutical Monoclonal Antibody Preparations. Journal of Pharmaceutical Sciences, 2021, 110, 3541-3545.	3.3	8
149	Preparation and validation of a skin model for the evaluation of intradermal powder injection devices. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 360-368.	4.3	7
150	New insights into process understanding of solid lipid extrusion (SLE) of extruded lipid implants for sustained protein delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 11-21.	4.3	7
151	Development of a convenient method for the determination of dimethyl sulfoxide in lyophilised pharmaceuticals by static headspace gas chromatography-mass spectrometry. Analytical Methods, 2019, 11, 2119-2122.	2.7	7
152	Systematic Studies on Stabilization of AAV Vector Formulations by Lyophilization. Journal of Pharmaceutical Sciences, 2022, 111, 2288-2298.	3.3	7
153	Application and Drying of Protein Drug Microdroplets on Solid Surfaces. Pharmaceutical Development and Technology, 2007, 12, 61-70.	2.4	6
154	Freeze-drying of HESylated IFNÎ \pm -2b: Effect of HESylation on storage stability in comparison to PEGylation. International Journal of Pharmaceutics, 2015, 495, 608-611.	5.2	6
155	Evaluation of stir-bar sorptive extraction coupled with thermal desorption GC–MS for the detection of leachables from polymer single use systems to drugs. Journal of Pharmaceutical and Biomedical Analysis, 2018, 152, 66-73.	2.8	6
156	Zn2+-triggered self-assembly of Gonadorelin [6-D-Phe] to produce nanostructures and fibrils. Scientific Reports, 2018, 8, 11280.	3.3	6
157	Structure-based discovery of a new protein-aggregation breaking excipient. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 207-216.	4.3	6
158	Exploring Chemical Space for New Substances to Stabilize a Therapeutic Monoclonal Antibody. Journal of Pharmaceutical Sciences, 2020, 109, 301-307.	3.3	6
159	Minimizing Oxidation of Freeze-Dried Monoclonal Antibodies in Polymeric Vials Using a Smart Packaging Approach. Pharmaceutics, 2021, 13, 1695.	4.5	6
160	Calorimetric Investigation of the Relaxation Phenomena in Amorphous Lyophilized Solids. Pharmaceutics, 2021, 13, 1735.	4.5	6
161	The impact of immunogenicity on therapeutic antibody pharmacokinetics: A preclinical evaluation of the effect of immune complex formation and antibody effector function on clearance. MAbs, 2021, 13, 1995929.	5.2	6
162	Characterization of ultrasound-mediated destruction of drug-loaded microbubbles using an improved in vitro model. Applied Acoustics, 2009, 70, 1323-1329.	3.3	5

#	Article	IF	Citations
163	Quality Control of Protein Crystal Suspensions Using Microflow Imaging and Flow Cytometry. Journal of Pharmaceutical Sciences, 2013, 102, 3860-3866.	3.3	5
164	Origin of Aggregate Formation in Antibody Crystal Suspensions Containing PEG. Journal of Pharmaceutical Sciences, 2016, 105, 1059-1065.	3.3	5
165	A pilot study using a novel pyrotechnically driven prototype applicator for epidermal powder immunization in piglets. International Journal of Pharmaceutics, 2018, 545, 215-228.	5.2	5
166	Overcoming challenges in co-formulation of proteins with contradicting stability profiles - EPO plus G-CSF. European Journal of Pharmaceutical Sciences, 2020, 141, 105073.	4.0	5
167	Study of the interaction between a novel, protein-stabilizing dipeptide and Interferon-alpha-2a by construction of a Markov state model from molecular dynamics simulations. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 105-112.	4.3	5
168	DMSO as new, counterintuitive excipient for freeze-drying human keratinocytes. European Journal of Pharmaceutical Sciences, 2021, 160, 105746.	4.0	5
169	Scale-up of water-based spider silk film casting using a film applicator. International Journal of Pharmaceutics, 2017, 532, 13-20.	5.2	4
170	Biophysical Characterization of Binary Therapeutic Monoclonal Antibody Mixtures. Molecular Pharmaceutics, 2020, 17, 2971-2986.	4.6	4
171	Primary and Secondary Binding of Exenatide to Liposomes. Biophysical Journal, 2020, 118, 600-611.	0.5	4
172	Investigation of the pH-dependent aggregation mechanisms of GCSF using low resolution protein characterization techniques and advanced molecular dynamics simulations. Computational and Structural Biotechnology Journal, 2022, 20, 1439-1455.	4.1	4
173	Asymmetrical Flow Field Flow Fractionation: A Useful Tool for the Separation of Protein Pharmaceuticals and Particulate Systems. Advances in Delivery Science and Technology, 2016, , 467-488.	0.4	3
174	Do interactions between protein and phospholipids influence the release behavior from lipid-based exenatide depot systems? European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 61-69.	4.3	3
175	Evaluation of release and pharmacokinetics of hexadecylphosphocholine (miltefosine) in phosphatidyldiglycerol-based thermosensitive liposomes. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183698.	2.6	2
176	It is Never Too Late for a Cocktail - Development and Analytical Characterization of Fixed-dose Antibody Combinations. Journal of Pharmaceutical Sciences, 2022, 111, 2149-2157.	3.3	2
177	Comparison of Syringes With Intravitreal Anti-VEGF Drugs: Particle Burden and Protein Aggregates in Brolucizumab, Aflibercept and Bevacizumab. Translational Vision Science and Technology, 2021, 10, 21.	2.2	1
178	Comparison of Submicron Particle Counting Methods with a Heat Stressed Monoclonal Antibody: Effect of Electrolytes and Implications on Sample Preparation. Journal of Pharmaceutical Sciences, 2022, 111, 1992-1999.	3.3	1
179	100% Control of Controlled Ice Nucleation Vials by Camera-Supported Optical Inspection in Freeze-Drying. PDA Journal of Pharmaceutical Science and Technology, 2021, , pdajpst.2020.012575.	0.5	0