
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10723629/publications.pdf Version: 2024-02-01

HIELINDAH

#	Article	IF	CITATIONS
1	PROTEOGLYCANS: STRUCTURES AND INTERACTIONS. Annual Review of Biochemistry, 1991, 60, 443-475.	11.1	1,798
2	Molecular diversity of heparan sulfate. Journal of Clinical Investigation, 2001, 108, 169-173.	8.2	767
3	Regulated Diversity of Heparan Sulfate. Journal of Biological Chemistry, 1998, 273, 24979-24982.	3.4	597
4	Further characterization of the antithrombin-binding sequence in heparin. Carbohydrate Research, 1982, 100, 393-410.	2.3	458
5	QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. Journal of Cell Biology, 2003, 162, 341-351.	5.2	443
6	Heparan sulfate: a piece of information. FASEB Journal, 1996, 10, 1270-1279.	0.5	430
7	Interactions between heparan sulfate and proteins: the concept of specificity. Journal of Cell Biology, 2006, 174, 323-327.	5.2	421
8	Anticoagulant activity of heparin: Separation of high-activity and low-activity heparin species by affinity chromatography on immobilized antithrombin. FEBS Letters, 1976, 66, 90-93.	2.8	408
9	More to "heparin―than anticoagulation. Thrombosis Research, 1994, 75, 1-32.	1.7	395
10	The Putative Tumor Suppressors EXT1 and EXT2 Are Glycosyltransferases Required for the Biosynthesis of Heparan Sulfate. Journal of Biological Chemistry, 1998, 273, 26265-26268.	3.4	374
11	Structure and biological interactions of heparin and heparan sulfate. Advances in Carbohydrate Chemistry and Biochemistry, 2001, 57, 159-206.	0.9	325
12	Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB Journal, 2004, 18, 252-263.	0.5	261
13	Domain Structure of Heparan Sulfates from Bovine Organs. Journal of Biological Chemistry, 1996, 271, 17804-17810.	3.4	256
14	Biosynthesis of Heparin. Journal of Biological Chemistry, 1973, 248, 7234-7241.	3.4	251
15	Chapter 3 Interactions Between Heparan Sulfate and Proteins—Design and Functional Implications. International Review of Cell and Molecular Biology, 2009, 276, 105-159.	3.2	242
16	Defining the Interleukin-8-binding Domain of Heparan Sulfate. Journal of Biological Chemistry, 1998, 273, 15487-15493.	3.4	240
17	Substrate Specificity of Heparanases from Human Hepatoma and Platelets. Journal of Biological Chemistry, 1998, 273, 18770-18777.	3.4	238
18	1976–1983, a critical period in the history of heparin: the discoveryof the antithrombin binding site. Biochimie, 2003, 85, 83-89.	2.6	219

#	Article	IF	CITATIONS
19	The Role of Serine in the Linkage of Heparin to Protein. Journal of Biological Chemistry, 1965, 240, 2817-2820.	3.4	218
20	Sequence Analysis of Heparan Sulfate Epitopes with Graded Affinities for Fibroblast Growth Factors 1 and 2. Journal of Biological Chemistry, 2001, 276, 30744-30752.	3.4	211
21	Structural basis and potential role of heparin/heparan sulfate binding to the angiogenesis inhibitor endostatin. EMBO Journal, 1999, 18, 6240-6248.	7.8	196
22	Targeted Disruption of a Murine Glucuronyl C5-epimerase Gene Results in Heparan Sulfate Lacking l-Iduronic Acid and in Neonatal Lethality. Journal of Biological Chemistry, 2003, 278, 28363-28366.	3.4	188
23	Selectively Desulfated Heparin Inhibits Fibroblast Growth Factor-induced Mitogenicity and Angiogenesis. Journal of Biological Chemistry, 2000, 275, 24653-24660.	3.4	164
24	Newly Generated Heparanase Knock-Out Mice Unravel Co-Regulation of Heparanase and Matrix Metalloproteinases. PLoS ONE, 2009, 4, e5181.	2.5	158
25	Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes and Development, 2007, 21, 316-331.	5.9	157
26	In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6473-6477.	7.1	156
27	Selective Effects of Sodium Chlorate Treatment on the Sulfation of Heparan Sulfate. Journal of Biological Chemistry, 1999, 274, 36267-36273.	3.4	154
28	The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Reports, 2000, 1, 282-286.	4.5	153
29	The Role of Galactose and Xylose in the Linkage of Heparin to Protein. Journal of Biological Chemistry, 1965, 240, 2821-2826.	3.4	139
30	The Chondroitin 4-Sulfate-Protein Linkage. Journal of Biological Chemistry, 1966, 241, 2113-2119.	3.4	138
31	Specificity of glycosaminoglycan–protein interactions. Current Opinion in Structural Biology, 2018, 50, 101-108.	5.7	137
32	Substrate Specificity and Domain Functions of Extracellular Heparan Sulfate 6-O-Endosulfatases, QSulf1 and QSulf2. Journal of Biological Chemistry, 2006, 281, 4969-4976.	3.4	136
33	Presence of N-Unsubstituted Glucosamine Units in Native Heparan Sulfate Revealed by a Monoclonal Antibody. Journal of Biological Chemistry, 1995, 270, 31303-31309.	3.4	135
34	Glycosaminoglycan-protein interactions: a question of specificity. Current Opinion in Structural Biology, 1994, 4, 677-682.	5.7	133
35	Mode of interaction between platelet factor 4 and heparin. Glycobiology, 1993, 3, 271-277.	2.5	132
36	Age-dependent Modulation of Heparan Sulfate Structure and Function. Journal of Biological Chemistry, 1998, 273, 13395-13398.	3.4	132

#	Article	IF	CITATIONS
37	Structural Requirement of Heparan Sulfate for Interaction with Herpes Simplex Virus Type 1 Virions and Isolated Glycoprotein C. Journal of Biological Chemistry, 1997, 272, 24850-24857.	3.4	127
38	Distribution of sulphate and iduronic acid residues in heparin and heparan sulphate. Biochemical Journal, 1974, 137, 33-43.	3.7	121
39	Characterization of Heparin and Heparan Sulfate Domains Binding to the Long Splice Variant of Platelet-derived Growth Factor A Chain. Journal of Biological Chemistry, 1997, 272, 5518-5524.	3.4	121
40	Biosynthesis of Dermatan Sulfate. Journal of Biological Chemistry, 2006, 281, 11560-11568.	3.4	120
41	Surface-exposed Amino Acid Residues of HPV16 L1 Protein Mediating Interaction with Cell Surface Heparan Sulfate. Journal of Biological Chemistry, 2007, 282, 27913-27922.	3.4	117
42	Generation of "Neoheparin―fromE.coliK5 Capsular Polysaccharide. Journal of Medicinal Chemistry, 2005, 48, 349-352.	6.4	114
43	Neurite Outgrowth in Brain Neurons Induced by Heparin-binding Growth-associated Molecule (HB-GAM) Depends on the Specific Interaction of HB-GAM with Heparan Sulfate at the Cell Surface. Journal of Biological Chemistry, 1996, 271, 2243-2248.	3.4	112
44	Heparin/Heparan Sulfate Biosynthesis. Journal of Biological Chemistry, 2008, 283, 20008-20014.	3.4	112
45	Identification of Iduronic Acid as the Major Sulfated Uronic Acid of Heparin. Journal of Biological Chemistry, 1971, 246, 74-82.	3.4	112
46	Interaction of lipoprotein lipase with native and modified heparin-like polysaccharides. Biochemical Journal, 1980, 189, 625-633.	3.7	111
47	N-[3H]acetyl-labeling, a convenient method for radiolabeling of glycosaminoglycans. Analytical Biochemistry, 1982, 119, 236-245.	2.4	111
48	Evidence for an ionic binding of lipoprotein lipase to heparin. Biochemical and Biophysical Research Communications, 1971, 43, 524-529.	2.1	110
49	Heparin-like compounds prepared by chemical modification of capsular polysaccharide from E. coli K5. Carbohydrate Research, 1994, 263, 271-284.	2.3	105
50	Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate. Nature Chemical Biology, 2007, 3, 773-778.	8.0	104
51	Heparan sulfate-protein interactions – A concept for drug design?. Thrombosis and Haemostasis, 2007, 98, 109-115.	3.4	101
52	Macrophages produce blood coagulation factors. FEBS Letters, 1980, 120, 41-43.	2.8	98
53	Sequence analysis of heparan sulphate and heparin oligosaccharides. Biochemical Journal, 1999, 339, 767-773.	3.7	97
54	3-O-Sulfated Oligosaccharide Structures Are Recognized by Anti-heparan Sulfate Antibody HS4C3. Journal of Biological Chemistry, 2006, 281, 4654-4662.	3.4	94

#	Article	IF	CITATIONS
55	Characterization of a Neutrophil Cell Surface Glycosaminoglycan That Mediates Binding of Platelet Factor 4. Journal of Biological Chemistry, 1999, 274, 12376-12382.	3.4	91
56	Substrate Specificity of the Heparan Sulfate Hexuronic Acid 2-O-Sulfotransferaseâ€. Biochemistry, 2001, 40, 5548-5555.	2.5	91
57	Biosynthetic Oligosaccharide Libraries for Identification of Protein-binding Heparan Sulfate Motifs. Journal of Biological Chemistry, 2002, 277, 30567-30573.	3.4	90
58	Further characterization of the heparin-protein linkage region. Biochimica Et Biophysica Acta - General Subjects, 1966, 130, 368-382.	2.4	88
59	Biosynthesis of Heparin/Heparan Sulfate. Journal of Biological Chemistry, 1997, 272, 28158-28163.	3.4	87
60	Heparan sulfate mediates amyloid-beta internalization and cytotoxicity. Glycobiology, 2010, 20, 533-541.	2.5	86
61	Effects of Heparin on Lipoprotein Lipase from Bovine Milk. Journal of Biological Chemistry, 1972, 247, 6610-6616.	3.4	85
62	Role of heparan sulfate domain organization in endostatin inhibition of endothelial cell function. EMBO Journal, 2002, 21, 6303-6311.	7.8	84
63	Fibroblast growth factors share binding sites in heparan sulphate. Biochemical Journal, 2005, 389, 145-150.	3.7	79
64	Binding of Heparin/Heparan Sulfate to Fibroblast Growth Factor Receptor 4. Journal of Biological Chemistry, 2001, 276, 16868-16876.	3.4	78
65	Processing of Macromolecular Heparin by Heparanase. Journal of Biological Chemistry, 2003, 278, 35152-35158.	3.4	77
66	Biosynthesis of L-iduronic acid in heparin: Epimerization of D-glucuronic acid on the polymer level. Biochemical and Biophysical Research Communications, 1972, 46, 985-991.	2.1	73
67	Heparan Sulfate-related Oligosaccharides in Ternary Complex Formation with Fibroblast Growth Factors 1 and 2 and Their Receptors. Journal of Biological Chemistry, 2006, 281, 26884-26892.	3.4	72
68	Heparan Sulfate Accumulation with Aβ Deposits in Alzheimer's Disease and Tg2576 Mice is Contributed by Clial Cells. Brain Pathology, 2008, 18, 548-561.	4.1	71
69	Amyloid-specific Heparan Sulfate from Human Liver and Spleen. Journal of Biological Chemistry, 1997, 272, 26091-26094.	3.4	70
70	Characterization of Anti-heparan Sulfate Phage Display Antibodies AO4B08 and HS4E4. Journal of Biological Chemistry, 2007, 282, 21032-21042.	3.4	70
71	Biosynthesis of Heparin. Journal of Biological Chemistry, 1974, 249, 3908-3915.	3.4	70
72	Common Binding Sites for Î ² -Amyloid Fibrils and Fibroblast Growth Factor-2 in Heparan Sulfate from Human Cerebral Cortex. Journal of Biological Chemistry, 1999, 274, 30631-30635.	3.4	66

#	Article	IF	CITATIONS
73	The effect of heparin on the inositol 1,4,5-trisphosphate receptor in rat liver microsomes Dependence on sulphate content and chain length. FEBS Letters, 1989, 252, 105-108.	2.8	65
74	Heparan Sulfate Domain Organization and Sulfation Modulate FGF-induced Cell Signaling. Journal of Biological Chemistry, 2010, 285, 26842-26851.	3.4	62
75	Substrate specificities of mouse heparan sulphate glucosaminyl 6-O-sulphotransferases. Biochemical Journal, 2003, 372, 371-380.	3.7	61
76	'Heparin'from anticoagulant drug into the new biology. , 2000, 17, 597-605.		60
77	Anticoagulant activity of heparin: Isolation of antithrombin-binding sites. FEBS Letters, 1976, 69, 51-54.	2.8	59
78	The molecular size of the antithrombin-binding sequence in heparin. FEBS Letters, 1980, 117, 203-206.	2.8	59
79	Selective Loss of Cerebral Keratan Sulfate in Alzheimer's Disease. Journal of Biological Chemistry, 1996, 271, 16991-16994.	3.4	59
80	Occurrence and Biosynthesis of β-Glucuronidic Linkages in Heparin. Journal of Biological Chemistry, 1971, 246, 5442-5447.	3.4	59
81	Characterization of the d-Glucuronyl C5-epimerase Involved in the Biosynthesis of Heparin and Heparan Sulfate. Journal of Biological Chemistry, 2001, 276, 20069-20077.	3.4	58
82	Location of N-Unsubstituted Glucosamine Residues in Heparan Sulfate. Journal of Biological Chemistry, 2002, 277, 49247-49255.	3.4	58
83	Expression of the Mouse Mastocytoma Glucosaminyl N-Deacetylase/N-Sulfotransferase in Human Kidney 293 Cells Results in Increased N-Sulfation of Heparan Sulfate. Biochemistry, 1996, 35, 5250-5256.	2.5	57
84	rib-2, a Caenorhabditis elegans Homolog of the Human Tumor Suppressor EXT Genes Encodes a Novel α1,4-N-Acetylglucosaminyltransferase Involved in the Biosynthetic Initiation and Elongation of Heparan Sulfate. Journal of Biological Chemistry, 2001, 276, 4834-4838.	3.4	57
85	Lack ofl-Iduronic Acid in Heparan Sulfate Affects Interaction with Growth Factors and Cell Signaling. Journal of Biological Chemistry, 2009, 284, 15942-15950.	3.4	57
86	Heparanase overexpression impairs inflammatory response and macrophage-mediated clearance of amyloid-β in murine brain. Acta Neuropathologica, 2012, 124, 465-478.	7.7	57
87	Aggregation of feline lymphoma cells by hyaluronic acid. International Journal of Cancer, 1973, 12, 169-178.	5.1	55
88	Biosynthesis of heparin. Loss of C-5 hydrogen during conversion of d-glucuronic to l-iduronic acid residues. Biochemical and Biophysical Research Communications, 1976, 70, 492-499.	2.1	54
89	Biosynthesis of Hyaluronan. Journal of Biological Chemistry, 2005, 280, 8813-8818.	3.4	54
90	The linkage of heparin to protein. Biochemical and Biophysical Research Communications, 1964, 17, 254-259.	2.1	53

#	Article	IF	CITATIONS
91	Heparin Amplifies Platelet-derived Growth Factor (PDGF)- BB-induced PDGF α-Receptor but Not PDGF β-Receptor Tyrosine Phosphorylation in Heparan Sulfate-deficient Cells. Journal of Biological Chemistry, 2002, 277, 19315-19321.	3.4	53
92	Anticoagulant activity of heparin: Assay of bovine, human and porcine preparations by amidolytic and clotting methods. Thrombosis Research, 1977, 11, 107-117.	1.7	52
93	Hexuronyl C5-epimerases in alginate and glycosaminoglycan biosynthesis. Biochimie, 2001, 83, 819-830.	2.6	49
94	Heparin – An old drug with multiple potential targets in Covidâ€19 therapy. Journal of Thrombosis and Haemostasis, 2020, 18, 2422-2424.	3.8	49
95	Biosynthesis of dermatan sulphate. Defructosylated <i>Escherichia coli</i> K4 capsular polysaccharide as a substrate for the <scp>d</scp> -glucuronyl C-5 epimerase, and an indication of a two-base reaction mechanism. Biochemical Journal, 1996, 313, 589-596.	3.7	48
96	Heparan sulfate-protein interactionsa concept for drug design?. Thrombosis and Haemostasis, 2007, 98, 109-15.	3.4	47
97	Biosynthesis of heparin/heparan sulphate: mechanism of epimerization of glucuronyl C-5. Biochemical Journal, 2000, 347, 69-75.	3.7	46
98	Heparan sulfate C5-epimerase is essential for heparin biosynthesis in mast cells. Nature Chemical Biology, 2006, 2, 195-196.	8.0	46
99	Microglial Heparan Sulfate Proteoglycans Facilitate the Cluster-of-Differentiation 14 (CD14)/Toll-like Receptor 4 (TLR4)-Dependent Inflammatory Response. Journal of Biological Chemistry, 2015, 290, 14904-14914.	3.4	45
100	N-Acetylgalactosamine (GalNAc) Transfer to the Common Carbohydrate-Protein Linkage Region of Sulfated Glycosaminoglycans. Journal of Biological Chemistry, 1995, 270, 22190-22195.	3.4	44
101	Selective reduction of 6-O-sulfation in heparan sulfate from transformed mammary epithelial cells. FEBS Journal, 1998, 252, 576-582.	0.2	44
102	Toward a Biotechnological Heparin through Combined Chemical and Enzymatic Modification of the Escherichia coli K5 Polysaccharide. Seminars in Thrombosis and Hemostasis, 2001, 27, 437-444.	2.7	44
103	The Anti-angiogenic His/Pro-rich Fragment of Histidine-rich Glycoprotein Binds to Endothelial Cell Heparan Sulfate in a Zn2+-dependent Manner. Journal of Biological Chemistry, 2006, 281, 10298-10304.	3.4	44
104	Degradation of heparin in mouse mastocytoma tissue. Biochemical Journal, 1971, 125, 1119-1129.	3.1	42
105	Studies, with a luminogenic peptide substrate, on blood coagulation Factor X/Xa produced by mouse peritoneal macrophages. Biochemical Journal, 1982, 206, 231-237.	3.1	41
106	Structural Diversity of N-Sulfated Heparan Sulfate Domains:  Distinct Modes of Glucuronyl C5 Epimerization, Iduronic Acid 2-O-Sulfation, and Glucosamine 6-O-Sulfation. Biochemistry, 2000, 39, 10823-10830.	2.5	41
107	Biosynthesis of heparin. Hydrogen exchange at carbon 5 of the glycuronosyl residues. Biochemistry, 1980, 19, 495-500.	2.5	39
108	Low-sulphated oligosaccharides derived from heparan sulphate inhibit normal angiogenesis. Glycobiology, 1993, 3, 567-573.	2.5	38

#	Article	IF	CITATIONS
109	Assay of N-acetylheparosan deacetylase with a capsular polysaccharide from Escherichia coli K5 as substrate. Analytical Biochemistry, 1983, 135, 134-140.	2.4	37
110	Irreversible Glucuronyl C5-epimerization in the Biosynthesis of Heparan Sulfate. Journal of Biological Chemistry, 2004, 279, 14631-14638.	3.4	37
111	Demonstration of a Novel Gene DEXT3 ofDrosophila melanogaster as the EssentialN-Acetylglucosamine Transferase in the Heparan Sulfate Biosynthesis. Journal of Biological Chemistry, 2002, 277, 13659-13665.	3.4	36
112	A prothrombinase complex of mouse peritoneal macrophages. Archives of Biochemistry and Biophysics, 1989, 273, 180-188.	3.0	35
113	Changes in glycosaminoglycan structure and composition of the main heparan sulphate proteoglycan from human colon carcinoma cells (perlecan) during cell differentiation. FEBS Journal, 1998, 254, 371-377.	0.2	35
114	Oligosaccharide Library-based Assessment of Heparan Sulfate 6-O-Sulfotransferase Substrate Specificity. Journal of Biological Chemistry, 2003, 278, 24371-24376.	3.4	35
115	FABMS/derivatisation strategies for the analysis of heparin-derived oligosaccharides. Carbohydrate Research, 1993, 244, 205-223.	2.3	34
116	Biosynthesis of Heparin/Heparan Sulfate. Journal of Biological Chemistry, 1995, 270, 11267-11275.	3.4	34
117	Differential tyrosine phosphorylation of fibroblast growth factor (FGF) receptor-1 and receptor proximal signal transduction in response to FGF-2 and heparin. Experimental Cell Research, 2003, 287, 190-198.	2.6	33
118	The antithrombin-binding sequence of heparin studied by n.m.r. spectroscopy. Carbohydrate Research, 1981, 88, C1-C4.	2.3	31
119	Sequence analysis of heparan sulphate and heparin oligosaccharides. Biochemical Journal, 1999, 339, 767.	3.7	30
120	Expression of heparan sulphate l-iduronyl 2-O-sulphotransferase in human kidney 293 cells results in increased d-glucuronyl 2-O-sulphation. Biochemical Journal, 2000, 346, 463-468.	3.7	29
121	Platelet antiheparin proteins and antithrombin III interact with different binding sites on heparin molecule. FEBS Letters, 1979, 102, 75-78.	2.8	27
122	Nitrocellulose Filter Binding to Assess Binding of Glycosaminoglycans to Proteins. Methods in Enzymology, 2003, 363, 327-339.	1.0	27
123	Biosynthesis of Heparin. I. Transfer of N-Acetylglucosamine and Glucuronic Acid to Low-Molecular Weight Heparin Fragments Acta Chemica Scandinavica, 1972, 26, 3515-3523.	0.7	27
124	Heparan sulfate - a polyanion with multiple messages. Pure and Applied Chemistry, 1997, 69, 1897-1902.	1.9	26
125	Heparanase Affects Food Intake and Regulates Energy Balance in Mice. PLoS ONE, 2012, 7, e34313.	2.5	26
126	The antithrombin-binding sequence of heparin. Biochemical Society Transactions, 1981, 9, 499-501.	3.4	25

#	Article	IF	CITATIONS
127	Substrate specificities of glycosyltransferases involved in formation of heparin precursor and E. coli K5 capsular polysaccharides. Carbohydrate Research, 1994, 255, 87-101.	2.3	24
128	Biosynthesis of heparin/heparan sulphate: mechanism of epimerization of glucuronyl C-5. Biochemical Journal, 2000, 347, 69.	3.7	24
129	N-Acetylated Domains in Heparan Sulfates Revealed by a Monoclonal Antibody against the Escherichia coli K5 Capsular Polysaccharide. Journal of Biological Chemistry, 1996, 271, 22802-22809.	3.4	23
130	Assessment of glycosaminoglycan-protein linkage tetrasaccharides as acceptors for GalNAc- and GlcNAc-transferases from mouse mastocytoma. Glycoconjugate Journal, 1997, 14, 737-742.	2.7	22
131	A personal voyage through the proteoglycan field. Matrix Biology, 2014, 35, 3-7.	3.6	21
132	Drosophila Heparan Sulfate, a Novel Design. Journal of Biological Chemistry, 2012, 287, 21950-21956.	3.4	20
133	Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling. Glycobiology, 2014, 24, 195-207.	2.5	19
134	Purification and characterization of fetal bovine serum beta-N-acetyl-D-galactosaminyltransferase and beta-D-glucuronyltransferase involved in chondroitin sulfate biosynthesis. FEBS Journal, 1999, 264, 461-467.	0.2	18
135	Depolymerisation and desulphation of chondroitin sulphate by enzymes from embryonic chick cartilage. FEBS Letters, 1974, 39, 49-52.	2.8	17
136	What Else Can â€~Heparin' Do?. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 1999, 29, 38-47.	0.3	17
137	Relative Susceptibilities of the Glucosamineâ^'Glucuronic Acid and N-Acetylglucosamineâ^'Glucuronic Acid Linkages to Heparin Lyase III. Biochemistry, 2004, 43, 8590-8599.	2.5	17
138	Biosynthesis of Heparin and Heparan Sulfate. , 1987, , 59-104.		16
139	The distribution of sulphate residues in the chondroitin sulphate chain. Biochemical Journal, 1971, 125, 903-908.	3.1	15
140	Biosynthesis of heparin. A new substrate for heparosan-N-sulfate-d-glucopyranosyluronate 5-epimerase. Carbohydrate Research, 1983, 117, 241-253.	2.3	15
141	Enzyme overexpression – an exercise toward understanding regulation of heparan sulfate biosynthesis. Scientific Reports, 2016, 6, 31242.	3.3	15
142	Identification of O-sulphate substituents on D-glucuronic acid units in heparin-related glycosaminoglycans using novel synthetic disaccharide standards. Glycobiology, 1995, 5, 807-811.	2.5	14
143	A potential role for chondroitin sulfate/dermatan sulfate in arm regeneration in Amphiura filiformis. Glycobiology, 2017, 27, cwx010.	2.5	14
144	Two Enzymes in One: N-Deacetylation and N-Sulfation in Heparin Biosynthesis are Catalyzed by the Same Protein. Advances in Experimental Medicine and Biology, 1992, 313, 107-111.	1.6	14

#	Article	IF	CITATIONS
145	Structure and Function of Basement Membrane Proteoglycans. Novartis Foundation Symposium, 1986, 124, 189-203.	1.1	14
146	Permanent activation of antithrombin by covalent attachment of heparin oligosaccharides. FEBS Letters, 1982, 143, 96-100.	2.8	12
147	Expression of heparan sulphate L-iduronyl 2-O-sulphotransferase in human kidney 293 cells results in increased D-glucuronyl 2-O-sulphation. Biochemical Journal, 2000, 346, 463.	3.7	12
148	Apolipoprotein E increases cell association of amyloid-β 40 through heparan sulfate and LRP1 dependent pathways. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2014, 21, 76-87.	3.0	12
149	Heparanase– Discovery and Targets. Advances in Experimental Medicine and Biology, 2020, 1221, 61-69.	1.6	12
150	The Occurrence of a Heparin-like Glycosaminoglycan in Bovine Milk and its Possible Association with Lipoprotein Lipase Acta Chemica Scandinavica, 1969, 23, 3587-3589.	0.7	12
151	A novel strategy to generate biologically active neo-glycosaminoglycan conjugates. Glycobiology, 1999, 9, 1331-1336.	2.5	10
152	Remodeling of Heparan Sulfate Sulfation by Extracellular Endosulfatases. , 2005, , 245-258.		9
153	Glucuronic acid- and glucosamine-containing oligosaccharides from the heparin-protein linkage region. Biochimica Et Biophysica Acta - General Subjects, 1968, 156, 203-206.	2.4	8
154	Foam Cell Conversion of Macrophages Alters the Biosynthesis of Heparan Sulfate. Biochemical and Biophysical Research Communications, 1998, 247, 790-795.	2.1	8
155	Heparanase overexpression impedes perivascular clearance of amyloid-β from murine brain: relevance to Alzheimer's disease. Acta Neuropathologica Communications, 2021, 9, 84.	5.2	7
156	Biosynthesis of heparin. Glycoconjugate Journal, 1987, 4, 179-189.	2.7	6
157	[85a] Enzymes involved in the formation of the carbohydrate structure of heparin. Methods in Enzymology, 1972, 28, 676-684.	1.0	5
158	Proteinase activity in macrophage cultures. Effects of heparin and antithrombin. Experimental Cell Research, 1980, 129, 478-481.	2.6	5
159	Regional Differences in the Incorporation Rates of ³ Hâ€Acetate and ³⁵ Sâ€Sulfate into Chondroitin Sulfate of Mouse Costal Cartilage in Vitro. Acta Physiologica Scandinavica, 1970, 80, 502-509.	2.2	4
160	Secretory heparin in murine mastocytoma cell lines. Biochemical Society Transactions, 1990, 18, 807-809.	3.4	4
161	Synthesis of the disaccharides methyl 4-O-(2?/3?-O-sulfo-?-d-glucopyranosyluronic) Tj ETQq1 1 0.784314 rgBT /Ov Glycoconjugate Journal, 1996, 13, 995-1003.	verlock 10 2.7) Tf 50 107 3
162	Heparinâ€like Polysaccharides in Intra―and Extravascular Coagulation Reactions. Acta Medica Scandinavica, 1987, 221, 139-144.	0.0	3

#	Article	IF	CITATIONS
163	STRUCTURAL BASIS FOR THE BIOLOGICAL EFFECTS OF HEPARIN. , 1979, , 167-179.		3
164	Biosynthesis of Heparin: Tritium Incorporation into Chemically Modified Heparin Catalyzed by C-5-Uronosylepimerase. , 1979, , 713-717.		2
165	D-Glucuronyl C5-Epimerase in Heparin/Heparan Sulfate Biosynthesis. , 2002, , 403-409.		1
166	BIOSYNTHESIS OF HEPARIN. , 1980, , 395-411.		1
167	Biosynthesis of heparan sulfate - how regulated does it need to be?. International Journal of Experimental Pathology, 2004, 85, A53-A54.	1.3	Ο
168	Heparan Sulfate GlcA/GlcNAc Transferase. , 2002, , 397-402.		0