Paul Witkovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10721049/publications.pdf

Version: 2024-02-01

		126907	155660
57	4,123	33	55
papers	citations	h-index	g-index
Γ0	Γ0	Γ0	2502
58	58	58	2583
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nature Communications, 2015, 6, 8543.	12.8	210
2	Mobilization of Calcium from Intracellular Stores Facilitates Somatodendritic Dopamine Release. Journal of Neuroscience, 2009, 29, 6568-6579.	3.6	89
3	Anatomical and neurochemical characterization of dopaminergic interplexiform processes in mouse and rat retinas. Journal of Comparative Neurology, 2008, 510, 158-174.	1.6	52
4	Cellular localization and function of DARPP-32 in the rodent retina. European Journal of Neuroscience, 2007, 25, 3233-3242.	2.6	9
5	Circuits and Properties of Signal Transmission in the Retina. Journal of Neurophysiology, 2006, 96, 509-511.	1.8	2
6	Differential distribution of voltage-gated calcium channels in dopaminergic neurons of the rat retina. Journal of Comparative Neurology, 2006, 497, 384-396.	1.6	16
7	Synaptic transmission at retinal ribbon synapses. Progress in Retinal and Eye Research, 2005, 24, 682-720.	15.5	219
8	Rat retinal dopaminergic neurons: Differential maturation of somatodendritic and axonal compartments. Journal of Comparative Neurology, 2005, 481, 352-362.	1.6	33
9	Activity-Dependent Phosphorylation of Tyrosine Hydroxylase in Dopaminergic Neurons of the Rat Retina. Journal of Neuroscience, 2004, 24, 4242-4249.	3.6	54
10	Dopamine and retinal function. Documenta Ophthalmologica, 2004, 108, 17-39.	2.2	669
11	Cellular Location and Circadian Rhythm of Expression of the Biological Clock GenePeriod 1in the Mouse Retina. Journal of Neuroscience, 2003, 23, 7670-7676.	3.6	83
12	D2-like dopamine receptors promote interactions between calcium and chloride channels that diminish rod synaptic transfer in the salamander retina. Visual Neuroscience, 2002, 19, 235-247.	1.0	57
13	Association of the AMPA receptor-related postsynaptic density proteins GRIP and ABP with subsets of glutamate-sensitive neurons in the rat retina. Journal of Comparative Neurology, 2002, 449, 129-140.	1.6	12
14	Calcium and Retinal Function. Molecular Neurobiology, 2002, 25, 113-132.	4.0	33
15	Chapter 9 Transmission at the photoreceptor synapse. Progress in Brain Research, 2001, 131, 145-159.	1.4	16
16	Diurnal and circadian variation of protein kinase C immunoreactivity in the rat retina. Journal of Comparative Neurology, 2001, 439, 140-150.	1.6	38
17	Intracellular calcium reduces lightâ€induced excitatory postâ€synaptic responses in salamander retinal ganglion cells. Journal of Physiology, 2001, 532, 43-53.	2.9	18
18	Photoreceptor classes and transmission at the photoreceptor synapse in the retina of the clawed frog, Xenopus laevis. Microscopy Research and Technique, 2000, 50, 338-346.	2.2	20

#	Article	IF	Citations
19	Somatostatin Modulates Voltage-Gated K ⁺ and Ca ²⁺ Currents in Rod and Cone Photoreceptors of the Salamander Retina. Journal of Neuroscience, 2000, 20, 929-936.	3.6	111
20	Caffeine-Sensitive Calcium Stores Regulate Synaptic Transmission from Retinal Rod Photoreceptors. Journal of Neuroscience, 1999, 19, 7249-7261.	3.6	101
21	Sub-millimolar cobalt selectively inhibits the receptive field surround of retinal neurons. Visual Neuroscience, 1999, 16, 159-168.	1.0	33
22	Dopamine D2 receptor-mediated modulation of rod-cone coupling in theXenopus retina. Journal of Comparative Neurology, 1998, 398, 529-538.	1.6	88
23	Dopamine D2 receptor-mediated modulation of rod-cone coupling in the Xenopus retina. , 1998, 398, 529.		1
24	Dopamine D2 receptorâ€mediated modulation of rodâ€cone coupling in the Xenopus retina. Journal of Comparative Neurology, 1998, 398, 529-538.	1.6	1
25	Gain of Rod to Horizontal Cell Synaptic Transfer: Relation to Glutamate Release and a Dihydropyridine-Sensitive Calcium Current. Journal of Neuroscience, 1997, 17, 7297-7306.	3.6	87
26	Activation of metabotropic glutamate receptors decreases a high-threshold calcium current in spiking neurons of the Xenopus retina. Visual Neuroscience, 1996, 13, 549-557.	1.0	28
27	Glutamate release by the intact light-responsive photoreceptor layer of the Xenopus retina. Journal of Neuroscience Methods, 1996, 68, 55-60.	2.5	38
28	Photoreceptor-horizontal cell connectivity, synaptic transmission and neuromodulation. , 1995, , 155-193.		17
29	Identification of cone classes in Xenopus retina by immunocytochemistry and staining with lectins and vital dyes. Visual Neuroscience, 1994, 11, 1185-1192.	1.0	32
30	Dopaminergic neurons in the retina of Xenopus laevis: amacrine vs. interplexiform subtypes and relation to bipolar cells. Cell and Tissue Research, 1994, 278, 45-56.	2.9	18
31	Effects of submicromolar concentrations of dopamine on photoreceptor to horizontal cell communication. Brain Research, 1993, 627, 122-128.	2.2	38
32	Light-evoked contraction of red absorbing cones in the Xenopus retina is maximally sensitive to green light. Visual Neuroscience, 1992, 8, 243-249.	1.0	17
33	Chapter 10 Functional roles of dopamine in the vertebrate retina. Progress in Retinal and Eye Research, 1991, 11, 247-292.	0.8	202
34	The organization of dopaminergic neurons in vertebrate retinas. Visual Neuroscience, 1991, 7, 113-124.	1.0	97
35	Slow light and dark adaptation of horizontal cells in the Xenopus retina: A role for endogenous dopamine. Visual Neuroscience, 1990, 5, 405-413.	1.0	42
36	Morphology and synaptic connections of HRP-filled, axon-bearing horizontal cells in theXenopus retina. Journal of Comparative Neurology, 1988, 275, 29-38.	1.6	15

#	Article	lF	Citations
37	Dopamine modifies the balance of rod and cone inputs to horizontal cells of the Xenopus retina. Brain Research, 1988, 449, 332-336.	2.2	115
38	Morphological changes induced in turtle retinal neurons by exposure to 6-hydroxydopamine and 5,6-dihydroxytryptamine. Journal of Neurocytology, 1987, 16, 55-67.	1.5	30
39	Glycogen metabolism in an amphibian retina. Experimental Eye Research, 1986, 43, 267-272.	2.6	7
40	Retinal neurochemistry of three elasmobranch species: An immunohistochemical approach. Journal of Comparative Neurology, 1986, 243, 1-12.	1.6	64
41	Chapter 7 Neuron â€" Glia interaction in the brain and retina. Progress in Retinal and Eye Research, 1985, 4, 181-219.	0.8	79
42	Retinal Hexokinase: Kinetic Properties and the Effect of Cyclic 3',5'-Adenosine Monophosphate. Journal of Neurochemistry, 1983, 41, 1694-1701.	3.9	5
43	Intracellular recording from identified photoreceptors and horizontal cells of theXenopus retina. Vision Research, 1983, 23, 921-931.	1.4	39
44	Uptake and localization of 3H-2 deoxy-D-glucose by retinal photoreceptors. Journal of Comparative Neurology, 1982, 204, 105-116.	1.6	30
45	Synaptic connections linking cones and horizontal cells in the retina of the pikeperch (Stizostedion) Tj ETQq $1\ 1$	0.784314 1.6	rgBT Overlo
46	Pigmented retinal epithelium involvement in photoreceptor development and function. The Journal of Experimental Zoology, 1974, 189, 357-377.	1.4	124
47	The nucleus basalis of the pigeon: A singleâ€unit analysis. Journal of Comparative Neurology, 1973, 147, 119-128.	1.6	71
48	Retinal structure in the smooth dogfish, <i>Mustelus canis</i> : General description and light microscopy of giant ganglion cells. Journal of Comparative Neurology, 1973, 148, 1-31.	1.6	102
49	Retinal structure in the smooth dogfish, Mustelus canis: Light microscopy of photoreceptor and horizontal cells. Journal of Comparative Neurology, 1973, 148, 33-45.	1.6	51
50	Retinal structure in the smooth dogfish, Mustelus canis: Light microscopy of bipolar cells. Journal of Comparative Neurology, 1973, 148, 47-59.	1.6	34
51	Retinal structure in the smooth dogfishMustelus canis: electron microscopy of serially sectioned bipolar cell synaptic terminals. Journal of Comparative Neurology, 1973, 150, 147-167.	1.6	40
52	Dogfish ganglion cell discharge resulting from extrinsic polarization of the horizontal cells. Journal of Physiology, 1972, 223, 449-460.	2.9	87
53	Synapses made by myelinated fibers running to teleost and elasmobranch retinas. Journal of Comparative Neurology, 1971, 142, 205-221.	1.6	103
54	Synaptic relationships in the plexiform layers of carp retina. Cell and Tissue Research, 1969, 100, 60-82.	2.9	214

PAUL WITKOVSKY

#	Article	IF	CITATIONS
55	The main sensory trigeminal nucleus in the pigeon: A singleâ€unit analysis. Journal of Comparative Neurology, 1968, 134, 255-263.	1.6	63
56	SINGLE NEURON ANALYSIS OF DORSAL COLUMN NUCLEI AND SPINAL NUCLEUS OF TRIGEMINAL IN CAT. Journal of Neurophysiology, 1961, 24, 333-349.	1.8	192
57	A functional analysis of neurons in the dorsal column nuclei and spinal nucleus of the trigeminal in the reptile (Alligator Mississippiensis). Journal of Comparative Neurology, 1961, 117, 97-105.	1.6	29