
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10720040/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A 20th anniversary perspective on the life of RAFT (RAFT coming of age). Polymer International, 2020, 69, 658-661.	1.6	33
2	Attempted Synthesis and Unexpected β-Fragmentation of a Hindered β-Keto Nitroxide. Australian Journal of Chemistry, 2017, 70, 1106.	0.5	1
3	An Alternating Donor–Acceptor Conjugated Polymer Based on Benzodithiophene and [3,4-c]pyrrole-4,6-dione: Synthesis, Characterization, and Application in Photovoltaic Devices. Australian Journal of Chemistry, 2015, 68, 1773.	0.5	4
4	Advances in Switchable RAFT Polymerization. Macromolecular Symposia, 2015, 350, 34-42.	0.4	44
5	Preparation of 1 : 1 alternating, nucleobase-containing copolymers for use in sequence-controlled polymerization. Polymer Chemistry, 2015, 6, 228-232.	1.9	24
6	Enhancement of MHC-I Antigen Presentation via Architectural Control of pH-Responsive, Endosomolytic Polymer Nanoparticles. AAPS Journal, 2015, 17, 358-369.	2.2	52
7	Donor-acceptor rod-coil block copolymers comprising poly[2,7-(9,9-dihexylfluorene)- <i>alt</i> -bithiophene] and fullerene as compatibilizers for organic photovoltaic devices. Journal of Polymer Science Part A, 2015, 53, 888-903.	2.5	10
8	RAFT for the Control of Monomer Sequence Distribution – Single Unit Monomer Insertion (SUMI) into Dithiobenzoate RAFT Agents. ACS Symposium Series, 2014, , 133-147.	0.5	17
9	An Armâ€First Approach to Cleavable Miktoâ€Arm Star Polymers by RAFT Polymerization. Macromolecular Rapid Communications, 2014, 35, 840-845.	2.0	47
10	Synthesis of cleavable multi-functional mikto-arm star polymer by RAFT polymerization: example of an anti-cancer drug 7-ethyl-10-hydroxycamptothecin (SN-38) as functional moiety. Science China Chemistry, 2014, 57, 995-1001.	4.2	17
11	Synthesis of a rod–coil block copolymer incorporating PCBM. Polymer Chemistry, 2013, 4, 53-56.	1.9	10
12	RAFT Polymerization and Some of its Applications. Chemistry - an Asian Journal, 2013, 8, 1634-1644.	1.7	276
13	Fundamentals of RAFT Polymerization. RSC Polymer Chemistry Series, 2013, , 205-249.	0.1	21
14	On the Origins of Nitroxide Mediated Polymerization (NMP) and Reversible Addition–Fragmentation Chain Transfer (RAFT). Australian Journal of Chemistry, 2012, 65, 945.	0.5	50
15	Living Radical Polymerization by the RAFT Process – A Third Update. Australian Journal of Chemistry, 2012, 65, 985.	0.5	920
16	Chain Transfer Kinetics of Acid/Base Switchable <i>N</i> -Aryl- <i>N</i> -Pyridyl Dithiocarbamate RAFT Agents in Methyl Acrylate, <i>N</i> -Vinylcarbazole and Vinyl Acetate Polymerization. Macromolecules, 2012, 45, 4205-4215.	2.2	81
17	RAFT Agent Design and Synthesis. Macromolecules, 2012, 45, 5321-5342.	2.2	505
18	Some Recent Developments in RAFT Polymerization. ACS Symposium Series, 2012, , 243-258.	0.5	9

#	Article	IF	CITATIONS
19	Block copolymers containing organic semiconductor segments by RAFT polymerization. Organic and Biomolecular Chemistry, 2011, 9, 6111.	1.5	44
20	Functional polymers for optoelectronic applications by RAFT polymerization. Polymer Chemistry, 2011, 2, 492-519.	1.9	153
21	Controlled RAFT Polymerization in a Continuous Flow Microreactor. Organic Process Research and Development, 2011, 15, 593-601.	1.3	123
22	Switchable Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization in Aqueous Solution, <i>N</i> , <i>N</i> -Dimethylacrylamide. Macromolecules, 2011, 44, 6738-6745.	2.2	105
23	Block Copolymer Synthesis through the Use of Switchable RAFT Agents. ACS Symposium Series, 2011, , 81-102.	0.5	24
24	Endâ€functional polymers, thiocarbonylthio group removal/transformation and reversible addition–fragmentation–chain transfer (RAFT) polymerization. Polymer International, 2011, 60, 9-25.	1.6	275
25	A Potential New RAFT - Click Reaction or a Cautionary Note on the Use of Diazomethane to Methylate RAFT-synthesized Polymers. Australian Journal of Chemistry, 2011, 64, 433.	0.5	18
26	Substituent Effects on RAFT Polymerization with Benzyl Aryl Trithiocarbonates. Macromolecular Chemistry and Physics, 2010, 211, 529-538.	1.1	26
27	Benzothiadiazole-Containing Pendant Polymers Prepared by RAFT and Their Electro-Optical Properties. Macromolecules, 2010, 43, 7101-7110.	2.2	25
28	Thiocarbonylthio end group removal from RAFTâ€synthesized polymers by a radicalâ€induced process. Journal of Polymer Science Part A, 2009, 47, 6704-6714.	2.5	103
29	Living Radical Polymerization by the RAFT Process - A Second Update. Australian Journal of Chemistry, 2009, 62, 1402.	0.5	874
30	New Features of the Mechanism of RAFT Polymerization. ACS Symposium Series, 2009, , 3-18.	0.5	39
31	Universal (Switchable) RAFT Agents. Journal of the American Chemical Society, 2009, 131, 6914-6915.	6.6	271
32	Polystyrene-block-poly(vinyl acetate) through the Use of a Switchable RAFT Agent. Macromolecules, 2009, 42, 9384-9386.	2.2	109
33	Radical addition–fragmentation chemistry in polymer synthesis. Polymer, 2008, 49, 1079-1131.	1.8	1,296
34	Toward Living Radical Polymerization. Accounts of Chemical Research, 2008, 41, 1133-1142.	7.6	675
35	Controlled synthesis of luminescent polymers using a bis-dithiobenzoate RAFT agent. Chemical Communications, 2008, , 1112.	2.2	39
36	Thiocarbonylthio End Group Removal from RAFT-Synthesized Polymers by Radical-Induced Reduction. Macromolecules, 2007, 40, 4446-4455.	2.2	221

#	Article	IF	CITATIONS
37	RAFT Polymerization: Adding to the Picture. Macromolecular Symposia, 2007, 248, 104-116.	0.4	79
38	Reversible Addition Fragmentation Chain Transfer Polymerization of Methyl Methacrylate in the Presence of Lewis Acids:  An Approach to Stereocontrolled Living Radical Polymerization. Macromolecules, 2007, 40, 9262-9271.	2.2	51
39	Living Radical Polymerization by the RAFT Process—A First Update. Australian Journal of Chemistry, 2006, 59, 669.	0.5	826
40	RAFT Copolymerization and Its Application to the Synthesis of Novel Dispersants—Intercalants—Exfoliants for Polymer—Clay Nanocomposites. ACS Symposium Series, 2006, , 514-532.	0.5	24
41	Rate Optimization in Controlled Radical Emulsion Polymerization Using RAFT. Macromolecular Theory and Simulations, 2006, 15, 70-86.	0.6	44
42	Thermolysis of RAFT-Synthesized Poly(Methyl Methacrylate). Australian Journal of Chemistry, 2006, 59, 755.	0.5	117
43	Remarkable Solvent Effects of Oxygen- and Sulfur-Containing Compounds on the Propagation Rate of Methyl Methacrylate. Zeitschrift Fur Physikalische Chemie, 2005, 219, 267-281.	1.4	11
44	The application of a novel profluorescent nitroxide to monitor thermo-oxidative degradation of polypropylene. Polymer Degradation and Stability, 2005, 89, 427-435.	2.7	60
45	Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer, 2005, 46, 8458-8468.	1.8	735
46	Living Radical Polymerization by the RAFT Process. ChemInform, 2005, 36, no.	0.1	0
47	Binary Copolymerization with Catalytic Chain Transfer. A Method for Synthesizing Macromonomers Based on Monosubstituted Monomers. Macromolecules, 2005, 38, 9037-9054.	2.2	32
48	Radical Loss in RAFT-Mediated Emulsion Polymerizations. Macromolecules, 2005, 38, 4901-4912.	2.2	61
49	Searching for More Effective Agents and Conditions for the RAFT Polymerization of MMA:Â Influence of Dithioester Substituents, Solvent, and Temperature. Macromolecules, 2005, 38, 3129-3140.	2.2	214
50	Living Radical Polymerization by the RAFT Process. Australian Journal of Chemistry, 2005, 58, 379.	0.5	2,116
51	Synthesis of Functionalized RAFT Agents for Light Harvesting Macromolecules. Macromolecules, 2004, 37, 5479-5481.	2.2	78
52	A New Double-Responsive Block Copolymer Synthesized via RAFT Polymerization:Â Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules, 2004, 37, 7861-7866.	2.2	524
53	Chain Transfer Activity of ω-Unsaturated Methacrylic Oligomers in Polymerizations of Methacrylic Monomers. Macromolecules, 2004, 37, 4441-4452.	2.2	44
54	Thiocarbonylthio Compounds [SC(Ph)Sâ^'R] in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R). Macromolecules, 2003, 36, 2256-2272.	2.2	758

#	Article	IF	CITATIONS
55	Kinetics and Mechanism of RAFT Polymerization. ACS Symposium Series, 2003, , 520-535.	0.5	58
56	RAFT Polymers: Novel Precursors for Polymer—Protein Conjugates. ACS Symposium Series, 2003, , 603-618.	0.5	62
57	Thiocarbonylthio Compounds (SC(Z)Sâ^'R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Effect of the Activating Group Z. Macromolecules, 2003, 36, 2273-2283.	2.2	587
58	Living Free Radical Polymerization with Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Tj ETQq0 0 0	rgBT /Ove 2.2	erloçk 10 Tf 50
59	Synthesis of novel architectures by radical polymerization with reversible addition fragmentation chain transfer (RAFT polymerization). Macromolecular Symposia, 2003, 192, 1-12.	0.4	147
60	RAFT synthesis of linear and star-shaped light harvesting polymers using di- and hexafunctional ruthenium polypyridine reagents. Journal of Materials Chemistry, 2003, 13, 2696-2700.	6.7	85
61	Initiating free radical polymerization. Macromolecular Symposia, 2002, 182, 65-80.	0.4	77
62	Pulsed Laser Copolymerization of Ring-Opening Cyclic Allylic Sulfide Monomers with Methyl Methacrylate and Styrene. Macromolecules, 2002, 35, 2474-2480.	2.2	16
63	Reversible Additionâ ^{••} Fragmentation Chain Transfer Polymerization Initiated with Ultraviolet Radiation. Macromolecules, 2002, 35, 7620-7627.	2.2	290
64	Successful Use of RAFT Techniques in Seeded Emulsion Polymerization of Styrene:  Living Character, RAFT Agent Transport, and Rate of Polymerization. Macromolecules, 2002, 35, 5417-5425.	2.2	155
65	Synthesis of light harvesting polymers by RAFT methods. Chemical Communications, 2002, , 2276-2277.	2.2	64
66	Living Free Radical Polymerisation Under a Constant Source of Gamma Radiation – An Example of Reversible Addition-Fragmentation Chain Transfer or Reversible Termination?. Macromolecular Rapid Communications, 2002, 23, 717-721.	2.0	56
67	Living free-radical polymerization of styrene under a constant source of ? radiation. Journal of Polymer Science Part A, 2002, 40, 19-25.	2.5	85
68	Substituent effects on the chain-transfer behavior of 7-methylene-2-methyl-1,5-dithiacyclooctane in the presence of disulfides and thiols. Journal of Polymer Science Part A, 2002, 40, 4421-4425.	2.5	15
69	Multiarm organic compounds for use as reversible chain-transfer agents in living radical polymerizations. Tetrahedron Letters, 2002, 43, 6811-6814.	0.7	54
70	Mechanism and Kinetics of RAFT-Based Living Radical Polymerizations of Styrene and Methyl Methacrylate. Macromolecules, 2001, 34, 402-408.	2.2	313
71	Ambient temperature reversible addition–fragmentation chain transfer polymerisation. Chemical Communications, 2001, , 1044-1045.	2.2	148
72	Copolymerization Behavior of 7-Methylene-2-methyl-1,5-dithiacyclooctane:  Reversible Cross-Propagation. Macromolecules, 2001, 34, 3869-3876.	2.2	32

#	Article	IF	CITATIONS
73	Tailored polymer architectures by reversible addition-frasmentation chain transfer. Macromolecular Symposia, 2001, 174, 209-212.	0.4	82
74	Replacement of benzene with regulators for the catalyzed polymerization of 1,3-butadiene to highcis-1,4-polybutadiene. Journal of Polymer Science Part A, 2001, 39, 2244-2255.	2.5	6
75	Active-center equilibrium in Ziegler-Natta butadiene polymerization. Journal of Polymer Science Part A, 2001, 39, 2256-2261.	2.5	8
76	Free radical ring-opening polymerization of cyclic allylic sulfides: Liquid monomers with low polymerization volume shrinkage. Journal of Polymer Science Part A, 2001, 39, 202-215.	2.5	39
77	Living free radical polymerization with reversible addition - fragmentation chain transfer (the life of) Tj ETQq1	1 0.784314 1.6	rgBT /Overloo 799
78	Living polymerization: Rationale for uniform terminology. , 2000, 38, 1706-1708.		97
79	Living polymerization: Rationale for uniform terminology. Journal of Polymer Science Part A, 2000, 38, 1709-1709.	2.5	12
80	Chain Transfer in the Sulfur-Centered Free Radical Ring-Opening Polymerization of 3-Methylene-6-methyl-1,5-dithiacyclooctane. Macromolecules, 2000, 33, 9553-9560.	2.2	29
81	Preparation of Macromonomers via Chain Transfer with and without Added Chain Transfer Agent. ACS Symposium Series, 2000, , 297-312.	0.5	22
82	Synthesis of Defined Polymers by Reversible Addition—Fragmentation Chain Transfer: The RAFT Process. ACS Symposium Series, 2000, , 278-296.	0.5	175
83	Thermal Decomposition Mechanisms of tert-Alkyl Peroxypivalates Studied by the Nitroxide Radical Trapping Technique. Journal of Organic Chemistry, 2000, 65, 16-23.	1.7	33
84	Free-Radical Ring-Opening Polymerization of Cyclic Allylic Sulfides. 2. Effect of Substituents on Seven- and Eight-Membered Ring Low Shrink Monomers. Macromolecules, 2000, 33, 6722-6731.	2.2	48
85	Living Polymers by the Use of Trithiocarbonates as Reversible Additionâ rFragmentation Chain Transfer (RAFT) Agents:Â ABA Triblock Copolymers by Radical Polymerization in Two Steps. Macromolecules, 2000, 33, 243-245.	2.2	446
86	Molecular Weight Characterization of Poly(N-isopropylacrylamide) Prepared by Living Free-Radical Polymerization. Macromolecules, 2000, 33, 6738-6745.	2.2	331
87	Initiation mechanisms for radical polymerization of styrene and methyl methacrylate with highly substituted peroxypivalate initiators. Polymer, 1999, 40, 1395-1401.	1.8	22
88	A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates. Tetrahedron Letters, 1999, 40, 2435-2438.	0.7	441
89	Investigation of methylaluminoxane as a cocatalyst for the polymerization of 1,3-butadiene to highcis-1,4-polybutadiene. Journal of Polymer Science Part A, 1999, 37, 3277-3284.	2.5	25
90	Living Radical Polymerization with Reversible Additionâ^'Fragmentation Chain Transfer (RAFT):Â Direct ESR Observation of Intermediate Radicals. Macromolecules, 1999, 32, 5457-5459.	2.2	174

#	Article	IF	CITATIONS
91	Tailored polymers by free radical processes. Macromolecular Symposia, 1999, 143, 291-307.	0.4	136
92	Living Radical Polymerization with Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Tj ETQq0 0 0 rgBT 6977-6980.	Overlock 2.2	10 Tf 50 707 519
93	Imidazolidinone Nitroxide-Mediated Polymerization. Macromolecules, 1999, 32, 6895-6903.	2.2	85
94	Chain Transfer to Polymer:Â A Convenient Route to Macromonomers. Macromolecules, 1999, 32, 7700-7702.	2.2	163
95	A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization:Â The RAFT Process. Macromolecules, 1999, 32, 2071-2074.	2.2	820
96	Living Free-Radical Polymerization by Reversible Additionâ^'Fragmentation Chain Transfer:Â The RAFT Process. Macromolecules, 1998, 31, 5559-5562.	2.2	4,672
97	Improving the knowledge and design of end groups in polymers produced by free radical polymerization. Polymers for Advanced Technologies, 1998, 9, 94-100.	1.6	11
98	Controlled-Growth Free-Radical Polymerization of Methacrylate Esters: Reversible Chain Transfer versus Reversible Termination. ACS Symposium Series, 1998, , 332-360.	0.5	76
99	Thermal Decomposition of 1-Cyclohexyl-1-methylethyl Peroxypivalate. Chemistry Letters, 1998, 27, 965-966.	0.7	1
100	A Novel Organic Peroxyester as an Exclusive Source oftert-Butyl Radicals. Chemistry Letters, 1997, 26, 1093-1094.	0.7	10
101	Initiation Mechanisms in Radical Polymerization:Â Reaction oftert-Alkyl Peroxypivalates with Methyl Methacrylate. Macromolecules, 1997, 30, 2843-2847.	2.2	19
102	Reaction of tert-Alkoxyl and Alkyl Radicals with Styrene Studied by the Nitroxide Radical-Trapping Technique. Journal of Organic Chemistry, 1997, 62, 5578-5582.	1.7	31
103	Free Radical Initiation Mechanisms in the Polymerization of Methyl Methacrylate and Styrene with 1,1,3,3-Tetramethylbutyl Peroxypivalate:  Addition of Neopentyl Radicals. Journal of the American Chemical Society, 1997, 119, 10987-10991.	6.6	18
104	Advantage of Usingtert-Hexyl Peroxypivalate as an Initiator for the Polymerization of Methyl Methacrylate. Macromolecules, 1996, 29, 8975-8976.	2.2	11
105	Initiation Mechanisms for Radical Polymerization of Methyl Methacrylate withtert-Butyl Peroxypivalate. Journal of the American Chemical Society, 1996, 118, 10824-10828.	6.6	20
106	Chain Transfer Activity of ω-Unsaturated Methyl Methacrylate Oligomers. Macromolecules, 1996, 29, 7717-7726.	2.2	140
107	Control of polymer structure by chain transfer processes. Macromolecular Symposia, 1996, 111, 1-11.	0.4	26
108	A new form of controlled growth free radical polymerization. Macromolecular Symposia, 1996, 111, 13-23.	0.4	82

#	Article	IF	CITATIONS
109	Free-Radical Ring-Opening Polymerization of Cyclic Allylic Sulfides. Macromolecules, 1996, 29, 6983-6989.	2.2	82
110	Chain transfer by radical additionâ€fragmentation mechanisms: Synthesis of macromonomers and endâ€functional oligomers. Macromolecular Symposia, 1995, 98, 101-123.	0.4	53
111	In vivo evaluation of polyurethanes based on novel macrodiols and MDI. Journal of Biomaterials Science, Polymer Edition, 1995, 6, 41-54.	1.9	19
112	Alkoxyamine-Initiated Living Radical Polymerization: Factors Affecting Alkoxyamine Homolysis Rates. Macromolecules, 1995, 28, 8722-8728.	2.2	325
113	Narrow Polydispersity Block Copolymers by Free-Radical Polymerization in the Presence of Macromonomers. Macromolecules, 1995, 28, 5381-5385.	2.2	203
114	New Free-Radical Ring-Opening Acrylate Monomers. Macromolecules, 1994, 27, 7935-7937.	2.2	84
115	Comparison of initiation mechanisms for polymerization initiated by primary, secondary and tertiary alkoxyl radicals. European Polymer Journal, 1993, 29, 397-400.	2.6	20
116	Degradation of medical-grade polyurethane elastomers: The effect of hydrogen peroxidein vitro. Journal of Biomedical Materials Research Part B, 1993, 27, 345-356.	3.0	54
117	Synthesis and characterization of hydroxy-terminated poly(alkylene oxides) by condensation polymerization of diols. Polymer International, 1992, 27, 275-283.	1.6	25
118	Absolute rate constants for radical-monomer reactions. Polymer Bulletin, 1992, 29, 647-652.	1.7	74
119	Polyurethane elastomers based on novel polyether macrodiols and MDI: Synthesis, mechanical properties, and resistance to hydrolysis and oxidation. Journal of Applied Polymer Science, 1992, 46, 319-328.	1.3	51
120	Title is missing!. Die Makromolekulare Chemie, 1992, 193, 369-378.	1.1	27
121	Initiation mechanisms in radical polymerization: reaction of isopropoxyl radicals with methyl methacrylate. Journal of the Chemical Society Perkin Transactions 1, 1991, , 1351.	0.9	19
122	The use of substituted allylic sulfides to prepare end-functional polymers of controlled molecular weight by free-radical polymerization. Macromolecules, 1991, 24, 3689-3695.	2.2	109
123	New chain transfer agents for free radical polymerizations. Polymer International, 1991, 26, 239-244.	1.6	16
124	Thiohydroxamic esters. Polymer Bulletin, 1991, 26, 291-295.	1.7	29
125	Chain transfer activity of some activated allylic compounds. Polymer Bulletin, 1990, 24, 501-505.	1.7	91
126	Title is missing!. Die Makromolekulare Chemie, 1990, 191, 1545-1553.	1.1	49

#	Article	IF	CITATIONS
127	REACTIVITY OF MACROMONOMERS IN FREE RADICAL POLYMERIZATION. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 1990, 30, 305-377.	2.2	88
128	Other Initiating Systems. , 1989, , 141-146.		15
129	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1988, 9, 547-551.	1.1	69
130	Thermal stability of poly(methyl methacrylate). Polymer Bulletin, 1988, 20, 499-503.	1.7	35
131	End groups of poly(methyl methacrylate-co-styrene) prepared with tert-butoxy, methyl, and/or phenyl radical initiation: effects of solvent, monomer composition, and conversion. Macromolecules, 1988, 21, 1522-1528.	2.2	38
132	Preparation of controlled-molecular-weight, olefin-terminated polymers by free radical methods. Chain transfer using allylic sulfides. Macromolecules, 1988, 21, 3122-3124.	2.2	144
133	Kinetic data for coupling of primary alkyl radicals with a stable nitroxide. Journal of the Chemical Society Chemical Communications, 1986, , 1003.	2.0	27
134	13C-1H heteronuclear chemical shift correlation spectroscopy applied to poly(methyl) Tj ETQq0 0 0 rgBT /Overloc sequences. Macromolecules, 1986, 19, 2494-2497.	k 10 Tf 50 2.2) 467 Td ([ca 28
135	Reaction of t-butoxy radicals with norbornadiene. Tetrahedron Letters, 1985, 26, 5081-5084.	0.7	14
136	Reactions of hydroxyl radicals with polymerizable olefins. Journal of the Chemical Society Perkin Transactions II, 1985, , 379.	0.9	18
137	Reaction of tert-butoxyl radicals with electron-rich α-methylvinyl monomers. Die Makromolekulare Chemie, 1984, 185, 1809-1817.	1.1	19
138	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1984, 5, 793-798.	1.1	84
139	2-(t-Butylazo)prop-2-yl hydroperoxide: a convenient source of hydroxyl radicals in organic media. Journal of the Chemical Society Chemical Communications, 1984, , 867.	2.0	9
140	Identification of end groups in polymers by a spin-echo NMR technique. Die Makromolekulare Chemie Rapid Communications, 1983, 4, 29-32.	1.1	20
141	Confirmation of the Mayo mechanism for the initiation of the thermal polymerization of styrene. Journal of the American Chemical Society, 1983, 105, 7761-7762.	6.6	84
142	Selectivity of the reaction of free radicals with styrene. Macromolecules, 1982, 15, 909-914.	2.2	223
143	Reactions of benzoyloxyl radicals with some common vinyl monomers. Die Makromolekulare Chemie Rapid Communications, 1982, 3, 533-536.	1.1	35
144	Quantitative studies on free radical reactions with the scavenger 1,1,3,3-tetramethylisoindolinyl-2-oxy. Tetrahedron Letters, 1982, 23, 1309-1312.	0.7	74

#	Article	IF	CITATIONS
145	A product study of the nitroxide inhibited thermal polymerization of styrene. Polymer Bulletin, 1982, 6, 589.	1.7	81
146	Head additon of radicals to methyl methacrylate. Polymer Bulletin, 1982, 6, 647.	1.7	17
147	The reaction of acyl peroxides with 2,2,6,6-tetramethylpiperidinyl-1-oxy. Tetrahedron Letters, 1981, 22, 1165-1168.	0.7	60
148	A new method for investigating the mechanism of initiation of radical polymerization. Polymer Bulletin, 1979, 1, 529-534.	1.7	99