Marc F Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10719363/publications.pdf

Version: 2024-02-01

304743 434195 1,467 33 22 31 h-index citations g-index papers 36 36 36 675 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Gating of auditory responses in the vocal control system of awake songbirds. Nature Neuroscience, 1998, 1, 513-518.	14.8	173
2	Brainstem and Forebrain Contributions to the Generation of Learned Motor Behaviors for Song. Journal of Neuroscience, 2005, 25, 8543-8554.	3 . 6	123
3	Song System Auditory Responses Are Stable and Highly Tuned During Sedation, Rapidly Modulated and Unselective During Wakefulness, and Suppressed By Arousal. Journal of Neurophysiology, 2003, 90, 2884-2899.	1.8	108
4	Noradrenergic Inputs Mediate State Dependence of Auditory Responses in the Avian Song System. Journal of Neuroscience, 2004, 24, 7745-7753.	3 . 6	96
5	Auditory Responses in Multiple Sensorimotor Song System Nuclei Are Co-Modulated by Behavioral State. Journal of Neurophysiology, 2004, 91, 2148-2163.	1.8	90
6	Pattern of Interhemispheric Synchronization in HVc During Singing Correlates With Key Transitions in the Song Pattern. Journal of Neurophysiology, 2003, 90, 3931-3949.	1.8	80
7	Sleep, off-line processing, and vocal learning. Brain and Language, 2010, 115, 45-58.	1.6	66
8	Sensorimotor Nucleus NIf Is Necessary for Auditory Processing But Not Vocal Motor Output in the Avian Song System. Journal of Neurophysiology, 2005, 93, 2157-2166.	1.8	62
9	Bottom-Up Activation of the Vocal Motor Forebrain by the Respiratory Brainstem. Journal of Neuroscience, 2008, 28, 2613-2623.	3.6	61
10	The respiratory-vocal system of songbirds. Progress in Brain Research, 2014, 212, 297-335.	1.4	60
11	Bilateral Control and Interhemispheric Coordination in the Avian Song Motor System. Annals of the New York Academy of Sciences, 2004, 1016, 171-186.	3.8	54
12	What birdsong can teach us about the central noradrenergic system. Journal of Chemical Neuroanatomy, 2010, 39, 96-111.	2.1	54
13	Interhemispheric Coordination of Premotor Neural Activity during Singing in Adult Zebra Finches. Journal of Neuroscience, 1998, 18, 9088-9098.	3 . 6	49
14	Slow Synaptic Inhibition Mediated by Metabotropic Glutamate Receptor Activation of GIRK Channels. Journal of Neurophysiology, 2000, 84, 2284-2290.	1.8	48
15	Hemispheric Coordination Is Necessary for Song Production in Adult Birds: Implications for a Dual Role for Forebrain Nuclei in Vocal Motor Control. Journal of Neurophysiology, 2008, 99, 373-385.	1.8	35
16	Slow Synaptic Inhibition in Nucleus HVc of the Adult Zebra Finch. Journal of Neuroscience, 1998, 18, 895-904.	3.6	34
17	Breathtaking Songs: Coordinating the Neural Circuits for Breathing and Singing. Physiology, 2016, 31, 442-451.	3.1	33
18	Social Brains in Context: Lesions Targeted to the Song Control System in Female Cowbirds Affect Their Social Network. PLoS ONE, 2013, 8, e63239.	2.5	31

#	Article	IF	CITATIONS
19	Using Both Sides of Your Brain: The Case for Rapid Interhemispheric Switching. PLoS Biology, 2008, 6, e269.	5.6	25
20	Breathing and vocal control: the respiratory system as both a driver and a target of telencephalic vocal motor circuits in songbirds. Experimental Physiology, 2012, 97, 455-461.	2.0	24
21	Testing the evolutionary conservation of vocal motoneurons in vertebrates. Respiratory Physiology and Neurobiology, 2016, 224, 2-10.	1.6	23
22	Depolarization and Laminin Independently Enable bFGF to Promote Neuronal Survival through Different Second Messenger Pathways. Developmental Biology, 1995, 168, 235-246.	2.0	22
23	Distributed and Selective Auditory Representation of Song Repertoires in the Avian Song System. Journal of Neurophysiology, 2006, 96, 3433-3447.	1.8	19
24	Characterization of respiratory neurons in the rostral ventrolateral medulla, an area critical for vocal production in songbirds. Journal of Neurophysiology, 2013, 109, 948-957.	1.8	16
25	An IACUC Perspective on Songbirds and Their Use in Neurobiological Research. ILAR Journal, 2010, 51, 424-430.	1.8	14
26	Linear and nonlinear auditory response properties of interneurons in a high-order avian vocal motor nucleus during wakefulness. Journal of Neurophysiology, 2012, 107, 2185-2201.	1.8	11
27	Proposing a neural framework for the evolution of elaborate courtship displays. ELife, 0, 11, .	6.0	11
28	Transient elevations in intracellular calcium are sufficient to induce sustained responsiveness to the neurotrophic factor bFGF., 1996, 31, 333-344.		10
29	Regulation of vocal precision by noradrenergic modulation of a motor nucleus. Journal of Neurophysiology, 2020, 124, 458-470.	1.8	8
30	Contributions of Bird Studies to Behavioral and Neurobiological Research. ILAR Journal, 2010, 51, 305-309.	1.8	6
31	Achieving Perfection through Variability: The Basal Ganglia Helped Me Do It!. Neuron, 2014, 82, 6-8.	8.1	6
32	Modulation by Social Context Sheds New Light on Mechanisms of Vocal Production. Neuron, 1998, 21, 645-647.	8.1	5
33	Female signal jamming in a socially monogamous brood parasite. Animal Behaviour, 2021, 172, 155-169.	1.9	5