
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10717721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology, 2011, 9, 749-759.	28.6	814
2	Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi. PLoS Pathogens, 2012, 8, e1003037.	4.7	595
3	Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 2011, 12, R40.	8.8	594
4	<i>Trichoderma</i> Research in the Genome Era. Annual Review of Phytopathology, 2013, 51, 105-129.	7.8	370
5	Secondary metabolism in Trichoderma – a genomic perspective. Microbiology (United Kingdom), 2012, 158, 35-45.	1.8	288
6	Molecular dialogues between Trichoderma and roots: Role of the fungal secretome. Fungal Biology Reviews, 2018, 32, 62-85.	4.7	183
7	Trichoderma–Plant–Pathogen Interactions: Advances in Genetics of Biological Control. Indian Journal of Microbiology, 2012, 52, 522-529.	2.7	173
8	Plant phenolic compounds and oxidative stress: integrated signals in fungal–plant interactions. Current Genetics, 2015, 61, 347-357.	1.7	152
9	A G Protein Alpha Subunit fromCochliobolus heterostrophusInvolved in Mating and Appressorium Formation. Fungal Genetics and Biology, 1999, 26, 19-32.	2.1	146
10	Trichoderma atroviride G-Protein Î \pm -Subunit Gene tga1 ls Involved in Mycoparasitic Coiling and Conidiation. Eukaryotic Cell, 2002, 1, 594-605.	3.4	139
11	TmkA, a Mitogen-Activated Protein Kinase of Trichoderma virens , Is Involved in Biocontrol Properties and Repression of Conidiation in the Dark. Eukaryotic Cell, 2003, 2, 446-455.	3.4	131
12	Melanin Biosynthesis in the Maize Pathogen Cochliobolus heterostrophus Depends on Two Mitogen-Activated Protein Kinases, Chk1 and Mps1, and the Transcription Factor Cmr1. Eukaryotic Cell, 2007, 6, 421-429.	3.4	130
13	Looking through the eyes of fungi: molecular genetics of photoreception. Molecular Microbiology, 2007, 64, 5-15.	2.5	123
14	Trichoderma Mitogen-Activated Protein Kinase Signaling Is Involved in Induction of Plant Systemic Resistance. Applied and Environmental Microbiology, 2005, 71, 6241-6246.	3.1	107
15	Secretome of Trichoderma Interacting With Maize Roots: Role in Induced Systemic Resistance*. Molecular and Cellular Proteomics, 2015, 14, 1054-1063.	3.8	95
16	Activation of an AP1-Like Transcription Factor of the Maize Pathogen Cochliobolus heterostrophus in Response to Oxidative Stress and Plant Signals. Eukaryotic Cell, 2005, 4, 443-454.	3.4	94
17	Rapid Blue Light Regulation of a Trichoderma harzianum Photolyase Gene. Journal of Biological Chemistry, 1999, 274, 14288-14294.	3.4	79
18	Trichoderma atroviride PHR1, a Fungal Photolyase Responsible for DNA Repair, Autoregulates Its Own Photoinduction. Eukaryotic Cell, 2007, 6, 1682-1692.	3.4	79

#	Article	IF	CITATIONS
19	Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. BMC Microbiology, 2015, 15, 2.	3.3	79
20	Role of Two G-Protein Alpha Subunits, TgaA and TgaB, in the Antagonism of Plant Pathogens by Trichoderma virens. Applied and Environmental Microbiology, 2004, 70, 542-549.	3.1	78
21	Host-specific transcriptomic pattern of Trichoderma virens during interaction with maize or tomato roots. BMC Genomics, 2015, 16, 8.	2.8	76
22	Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Biochemical and Biophysical Research Communications, 2010, 398, 765-770.	2.1	75
23	A Mitogen-Activated Protein Kinase Pathway Modulates the Expression of Two Cellulase Genes in Cochliobolus heterostrophus during Plant Infection. Plant Cell, 2003, 15, 835-844.	6.6	72
24	Infection stages of the dermatophyte pathogenTrichophyton: microscopic characterization and proteolytic enzymes. Medical Mycology, 2007, 45, 149-155.	0.7	71
25	Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biology Reviews, 2022, 39, 15-33.	4.7	68
26	A secondary metabolite biosynthesis cluster in Trichoderma virens: evidence from analysis of genes underexpressed in a mutant defective in morphogenesis and antibiotic production. Current Genetics, 2006, 50, 193-202.	1.7	65
27	Distinct and Combined Roles of the MAP Kinases of <i>Cochliobolus heterostrophus</i> in Virulence and Stress Responses. Molecular Plant-Microbe Interactions, 2008, 21, 769-780.	2.6	64
28	PacC and pH–dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics, 2013, 14, 138.	2.8	63
29	Light Effects on Several Chloroplast Components in Norflurazon-Treated Pea Seedlings. Plant Physiology, 1988, 88, 340-347.	4.8	53
30	Phytochrome Regulation of Greening in Pisum. Plant Physiology, 1988, 86, 299-305.	4.8	52
31	Markers for Host-Induced Gene Expression in Trichophyton Dermatophytosis. Infection and Immunity, 2005, 73, 6584-6590.	2.2	45
32	G-Protein β Subunit of Cochliobolus heterostrophus Involved in Virulence, Asexual and Sexual Reproductive Ability, and Morphogenesis. Eukaryotic Cell, 2004, 3, 1653-1663.	3.4	44
33	Histidine Kinase Two-Component Response Regulator Proteins Regulate Reproductive Development, Virulence, and Stress Responses of the Fungal Cereal Pathogens Cochliobolus heterostrophus and Gibberella zeae. Eukaryotic Cell, 2010, 9, 1867-1880.	3.4	44
34	G protein activators and cAMP promote mycoparasitic behaviour in Trichoderma harzianum. Mycological Research, 1999, 103, 1637-1642.	2.5	43
35	Characterization of Blue-light and Developmental Regulation of the Photolyase gene phr1 in Trichoderma harzianum. Photochemistry and Photobiology, 2000, 71, 662.	2.5	41
36	A paralog of the proteinaceous elicitor SM1 is involved in colonization of maize roots by Trichoderma virens. Fungal Biology, 2015, 119, 476-486.	2.5	41

#	Article	IF	CITATIONS
37	Expression and purification of biologically active Trichoderma virens proteinaceous elicitor Sm1 in Pichia pastoris. Protein Expression and Purification, 2010, 72, 131-138.	1.3	40
38	Mycoparasitism. , 0, , 676-693.		38
39	Genomicsâ€Driven Discovery of the Gliovirin Biosynthesis Gene Cluster in the Plant Beneficial Fungus <i>Trichoderma Virens</i> . ChemistrySelect, 2017, 2, 3347-3352.	1.5	32
40	INDUCTION OF Trichoderma SPORULATION BY NANOSECOND LASER PULSES: EVIDENCE AGAINST CRYPTOCHROME CYCLING. Photochemistry and Photobiology, 1990, 51, 99-104.	2.5	31
41	The fungal pathogen Cochliobolus heterostrophus responds to maize phenolics: novel small molecule signals in a plant-fungal interaction. Cellular Microbiology, 2010, 12, 1421-1434.	2.1	31
42	Green fluorescent protein (GFP) as a vital marker for pathogenic development of the dermatophyte Trichophyton mentagrophytes. Microbiology (United Kingdom), 2004, 150, 2785-2790.	1.8	28
43	Frequency-dependent photoacoustic signals from leaves and their relation to photosynthesis. FEBS Letters, 1981, 129, 44-46.	2.8	27
44	Host Physiology and Pathogenic Variation of Cochliobolus heterostrophus Strains with Mutations in the G Protein Alpha Subunit, CGA1. Applied and Environmental Microbiology, 2004, 70, 5005-5009.	3.1	26
45	Phytochrome regulation of greening in wild type and long-hypocotyl mutants ofArabidopsis thaliana. Planta, 1990, 181, 234-238.	3.2	23
46	Synthetic cells with self-activating optogenetic proteins communicate with natural cells. Nature Communications, 2022, 13, 2328.	12.8	23
47	Structure–Activity Relationships Delineate How the Maize Pathogen <i>Cochliobolus heterostrophus</i> Uses Aromatic Compounds as Signals and Metabolites. Molecular Plant-Microbe Interactions, 2012, 25, 931-940.	2.6	22
48	Targeting the Calcineurin Pathway Enhances Ergosterol Biosynthesis Inhibitors against Trichophyton mentagrophytes In Vitro and in a Human Skin Infection Model. Antimicrobial Agents and Chemotherapy, 2007, 51, 3743-3746.	3.2	21
49	Iron, Oxidative Stress, and Virulence: Roles of Iron-Sensitive Transcription Factor Sre1 and the Redox Sensor ChAp1 in the Maize Pathogen <i>Cochliobolus heterostrophus</i> . Molecular Plant-Microbe Interactions, 2013, 26, 1473-1485.	2.6	21
50	Altered Phytochrome Regulation of Greening in an aurea Mutant of Tomato. Plant Physiology, 1990, 92, 1004-1008.	4.8	19
51	Photoreactivation of UV-Inactivated Spores of Trichoderma harzianum. Photochemistry and Photobiology, 1997, 65, 849-854.	2.5	18
52	Developmental Regulation of cmp1, a Gene Encoding a Multidomain Conidiospore Surface Protein of Trichoderma. Fungal Genetics and Biology, 1999, 27, 88-99.	2.1	17
53	Elevated Riboflavin Requirement for Postphotoinductive Events in Sporulation of a Trichoderma Auxotroph. Plant Physiology, 1983, 71, 200-204.	4.8	16
54	Oxidant-Sensing Pathways in the Responses of Fungal Pathogens to Chemical Stress Signals. Frontiers in Microbiology, 2019, 10, 567.	3.5	16

#	Article	IF	CITATIONS
55	Role of the transcription factor <scp>ChAP1</scp> in cytoplasmic redox homeostasis: imaging with a genetically encoded sensor in the maize pathogen <i><scp>C</scp>ochliobolus heterostrophus</i> . Molecular Plant Pathology, 2013, 14, 786-790.	4.2	15
56	Regulation of conidiation and antagonistic properties of the soil-borne plant beneficial fungus Trichoderma virens by a novel proline-, glycine-, tyrosine-rich protein and a GPI-anchored cell wall protein. Current Genetics, 2019, 65, 953-964.	1.7	15
57	ROSEOFLAVIN INHIBITION OF PHOTOCONIDIATION IN A Trichoderma RIBOFLAVIN AUXOTROPH: INDIRECT EVIDENCE FOR FLAVIN REQUIREMENT for PHOTOREACTIONS. Photochemistry and Photobiology, 1984, 40, 763-770.	2.5	14
58	Plant phenolic acids induce programmed cell death of a fungal pathogen: MAPK signaling and survival of <i>Cochliobolus heterostrophus</i> . Environmental Microbiology, 2016, 18, 4188-4199.	3.8	12
59	Secretome Analysis of Arabidopsis–Trichoderma atroviride Interaction Unveils New Roles for the Plant Clutamate:Glyoxylate Aminotransferase GGAT1 in Plant Growth Induced by the Fungus and Resistance against Botrytis cinerea. International Journal of Molecular Sciences, 2021, 22, 6804.	4.1	12
60	DIFFERENTIAL SPECTROPHOTOMETRY OF Phycomyces MUTANTS WITH ABNORMAL PHOTORESPONSES. Photochemistry and Photobiology, 1986, 44, 207-214.	2.5	11
61	RHYTHMS IN BLUE-LIGHT-INDUCED CONIDIATION OF WILD TYPE AND A MUTANT STRAIN OF Trichoderma harzianum. Photochemistry and Photobiology, 1988, 47, 425-431.	2.5	10
62	Light-induced absorbance changes in extracts of Phycomyces sporangiophores: Modifications in night-blind mutants. Journal of Photochemistry and Photobiology B: Biology, 1988, 1, 305-313.	3.8	10
63	Preliminary study of activity of the thioredoxin inhibitor pleurotin against <i>Trichophyton mentagrophytes</i> : a novel antiâ€dermatophyte possibility. Mycoses, 2009, 52, 313-317.	4.0	10
64	Genetic interaction of the stress response factors ChAP1 and Skn7 in the maize pathogenCochliobolus heterostrophus. FEMS Microbiology Letters, 2014, 350, 83-89.	1.8	10
65	Modified Light-Induced Absorbance Changes in <i>dim Y</i> Photoresponse Mutants of <i>Trichoderma</i> . Plant Physiology, 1986, 81, 726-730.	4.8	9
66	MRSP1, encoding a novel Trichoderma secreted protein, is negatively regulated by MAPK. Biochemical and Biophysical Research Communications, 2006, 350, 716-722.	2.1	8
67	Properties and working mechanisms of the photoreceptors. , 1986, , 159-183.		8
68	Signaling by the Pathogenicity-Related MAP Kinase of <i>Cochliobolus heterostrophus</i> Correlates With Its Local Accumulation Rather Than Phosphorylation. Molecular Plant-Microbe Interactions, 2009, 22, 1093-1103.	2.6	7
69	Deletion of the Trichoderma virens NRPS, Tex7, induces accumulation of the anti-cancer compound heptelidic acid. Biochemical and Biophysical Research Communications, 2020, 529, 672-677.	2.1	7
70	Developmental Roles of the Hog1 Protein Phosphatases of the Maize Pathogen Cochliobolus heterostrophus. Journal of Fungi (Basel, Switzerland), 2021, 7, 83.	3.5	7
71	Changes in synthesis and abundance of specific polypeptides at early and late stages of blue-light-induced sporulation of Trichoderma. Journal of Photochemistry and Photobiology B: Biology, 1991, 11, 117-127.	3.8	6
72	Photocontrol of the Accumulation of Plastid Polypeptides during Greening of Tomato Cotyledons. Plant Physiology, 1992, 100, 1934-1939.	4.8	6

#	Article	IF	CITATIONS
73	Adhesion as a Focus in Trichoderma–Root Interactions. Journal of Fungi (Basel, Switzerland), 2022, 8, 372.	3.5	6
74	The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic. Current Genetics, 2020, 66, 187-203.	1.7	5
75	Ferulic acid, an abundant maize phenolic, regulates ABC and MFS transporter gene expression in the maize pathogen Cochliobolus heterostrophus. Journal of Plant Diseases and Protection, 2021, 128, 1383-1391.	2.9	3
76	Cochliobolus heterostrophus: A Dothideomycete Pathogen of Maize. Soil Biology, 2013, , 213-228.	0.8	3
77	In vivo absorption spectra ofNeurospora crassa white collar photomutants. Experimental Mycology, 1987, 11, 74-76.	1.6	2
78	Identification of Differentially Expressed Fungal Genes In Planta by Suppression Subtraction Hybridization. Methods in Molecular Biology, 2010, 638, 115-123.	0.9	2
79	Editorial: Molecular Intricacies of Trichoderma-Plant-Pathogen Interactions. Frontiers in Fungal Biology, 2022, 3, .	2.0	2
80	Characterization of Blue-light and Developmental Regulation of the Photolyase gene phr1 in Trichoderma harzianum. Photochemistry and Photobiology, 2007, 71, 662-668.	2.5	1
81	A FIBER-OPTIC RATIO FLUOROMETER FOR MUTANT ISOLATION. Photochemistry and Photobiology, 1992, 56, 417-420.	2.5	0
82	Can We Define an Experimental Framework to Approach the Genetic Basis of Root Colonization?. Rhizosphere Biology, 2020, , 1-17.	0.6	0