
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10714493/publications.pdf Version: 2024-02-01

MADE F DUDIEV

#	Article	IF	CITATIONS
1	A Pilot Trial of the Combination of Vemurafenib with Adoptive Cell Therapy in Patients with Metastatic Melanoma. Clinical Cancer Research, 2017, 23, 351-362.	3.2	52
2	Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response. , 2017, 5, 85.		102
3	Randomized, Prospective Evaluation Comparing Intensity of Lymphodepletion Before Adoptive Transfer of Tumor-Infiltrating Lymphocytes for Patients With Metastatic Melanoma. Journal of Clinical Oncology, 2016, 34, 2389-2397.	0.8	293
4	Tumor-Infiltrating Lymphocytes Genetically Engineered with an Inducible Gene Encoding Interleukin-12 for the Immunotherapy of Metastatic Melanoma. Clinical Cancer Research, 2015, 21, 2278-2288.	3.2	310
5	A Pilot Trial Using Lymphocytes Genetically Engineered with an NY-ESO-1–Reactive T-cell Receptor: Long-term Follow-up and Correlates with Response. Clinical Cancer Research, 2015, 21, 1019-1027.	3.2	677
6	Complete Regression of Metastatic Cervical Cancer After Treatment With Human Papillomavirus–Targeted Tumor-Infiltrating T Cells. Journal of Clinical Oncology, 2015, 33, 1543-1550.	0.8	513
7	Persistence of CTL Clones Targeting Melanocyte Differentiation Antigens Was Insufficient to Mediate Significant Melanoma Regression in Humans. Clinical Cancer Research, 2015, 21, 534-543.	3.2	47
8	Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor. Journal of Clinical Oncology, 2015, 33, 540-549.	0.8	1,397
9	PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. Journal of Clinical Investigation, 2014, 124, 2246-2259.	3.9	892
10	Cancer Immunotherapy Based on Mutation-Specific CD4+ T Cells in a Patient with Epithelial Cancer. Science, 2014, 344, 641-645.	6.0	1,460
11	Efficient Identification of Mutated Cancer Antigens Recognized by T Cells Associated with Durable Tumor Regressions. Clinical Cancer Research, 2014, 20, 3401-3410.	3.2	364
12	Mutated PPP1R3B Is Recognized by T Cells Used To Treat a Melanoma Patient Who Experienced a Durable Complete Tumor Regression. Journal of Immunology, 2013, 190, 6034-6042.	0.4	145
13	Randomized Selection Design Trial Evaluating CD8 ⁺ -Enriched Versus Unselected Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy for Patients With Melanoma. Journal of Clinical Oncology, 2013, 31, 2152-2159.	0.8	196
14	Cancer Regression and Neurological Toxicity Following Anti-MAGE-A3 TCR Gene Therapy. Journal of Immunotherapy, 2013, 36, 133-151.	1.2	953
15	Phenotype and Function of T Cells Infiltrating Visceral Metastases from Gastrointestinal Cancers and Melanoma: Implications for Adoptive Cell Transfer Therapy. Journal of Immunology, 2013, 191, 2217-2225.	0.4	89
16	Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood, 2013, 122, 4129-4139.	0.6	537
17	Myeloid Cells Obtained from the Blood but Not from the Tumor Can Suppress T-cell Proliferation in Patients with Melanoma. Clinical Cancer Research, 2012, 18, 5212-5223.	3.2	87
18	TIL therapy broadens the tumor-reactive CD8 ⁺ T cell compartment in melanoma patients. Oncolmmunology, 2012, 1, 409-418.	2.1	171

#	Article	IF	CITATIONS
19	Bioreactors get personal. Oncolmmunology, 2012, 1, 1435-1437.	2.1	30
20	Audiovestibular Dysfunction Associated with Adoptive Cell Immunotherapy for Melanoma. Otolaryngology - Head and Neck Surgery, 2012, 147, 744-749.	1.1	48
21	Replication-Competent Retroviruses in Gene-Modified T Cells Used in Clinical Trials: Is It Time to Revise the Testing Requirements?. Molecular Therapy, 2012, 20, 246-249.	3.7	54
22	Tumor-specific CD4+ Melanoma Tumor-infiltrating Lymphocytes. Journal of Immunotherapy, 2012, 35, 400-408.	1.2	88
23	Simplified Method of the Growth of Human Tumor Infiltrating Lymphocytes in Gas-permeable Flasks to Numbers Needed for Patient Treatment. Journal of Immunotherapy, 2012, 35, 283-292.	1.2	114
24	Evaluation of Î ³ -Retroviral Vectors That Mediate the Inducible Expression of IL-12 for Clinical Application. Journal of Immunotherapy, 2012, 35, 430-439.	1.2	30
25	A Major Player "Gets in the Act― Journal of Immunotherapy, 2012, 35, 595-597.	1.2	0
26	Levels of peripheral CD4+FoxP3+ regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood, 2012, 119, 5688-5696.	0.6	176
27	The Stoichiometric Production of IL-2 and IFN-Î ³ mRNA Defines Memory T Cells That Can Self-Renew After Adoptive Transfer in Humans. Science Translational Medicine, 2012, 4, 149ra120.	5.8	51
28	Minimally invasive liver resection to obtain tumor-infiltrating lymphocytes for adoptive cell therapy in patients with metastatic melanoma. World Journal of Surgical Oncology, 2012, 10, 113.	0.8	10
29	IRF5 gene polymorphisms in melanoma. Journal of Translational Medicine, 2012, 10, 170.	1.8	36
30	B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor–transduced T cells. Blood, 2012, 119, 2709-2720.	0.6	1,296
31	Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE® bioreactor. Journal of Translational Medicine, 2012, 10, 69.	1.8	84
32	Adoptive immunotherapy for cancer: harnessing the T cell response. Nature Reviews Immunology, 2012, 12, 269-281.	10.6	1,412
33	Evaluation of chemokine-ligand pathways in pretreatment tumor biopsies as predictive biomarker of response to adoptive therapy in metastatic melanoma patients Journal of Clinical Oncology, 2012, 30, 8576-8576.	0.8	2
34	Study of tumor-infiltrating T-cell reactivity to metastatic gastrointestinal cancers Journal of Clinical Oncology, 2012, 30, e14179-e14179.	0.8	0
35	Augmented Lymphocyte Expansion from Solid Tumors With Engineered Cells for Costimulatory Enhancement. Journal of Immunotherapy, 2011, 34, 651-661.	1.2	19
36	Adoptive Cell Therapy for Patients with Melanoma. Journal of Cancer, 2011, 2, 360-362.	1.2	23

#	Article	IF	CITATIONS
37	Adoptive Transfer of Autologous Natural Killer Cells Leads to High Levels of Circulating Natural Killer Cells but Does Not Mediate Tumor Regression. Clinical Cancer Research, 2011, 17, 6287-6297.	3.2	377
38	Durable Complete Responses in Heavily Pretreated Patients with Metastatic Melanoma Using T-Cell Transfer Immunotherapy. Clinical Cancer Research, 2011, 17, 4550-4557.	3.2	1,823
39	Tumor Regression in Patients With Metastatic Synovial Cell Sarcoma and Melanoma Using Genetically Engineered Lymphocytes Reactive With NY-ESO-1. Journal of Clinical Oncology, 2011, 29, 917-924.	0.8	1,427
40	T Cells Targeting Carcinoembryonic Antigen Can Mediate Regression of Metastatic Colorectal Cancer but Induce Severe Transient Colitis. Molecular Therapy, 2011, 19, 620-626.	3.7	857
41	Tumor Infiltrating Lymphocyte Therapy for Metastatic Melanoma: Analysis of Tumors Resected for TIL. Journal of Immunotherapy, 2010, 33, 840-847.	1.2	113
42	Enrichment of CD8+ Cells From Melanoma Tumor-infiltrating Lymphocyte Cultures Reveals Tumor Reactivity for Use in Adoptive Cell Therapy. Journal of Immunotherapy, 2010, 33, 547-556.	1.2	64
43	A Simplified Method for the Clinical-scale Generation of Central Memory-like CD8+ T Cells After Transduction With Lentiviral Vectors Encoding Antitumor Antigen T-cell Receptors. Journal of Immunotherapy, 2010, 33, 648-658.	1.2	31
44	Adoptive Cell Therapy. Cancer Journal (Sudbury, Mass), 2010, 16, 336-341.	1.0	86
45	Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood, 2010, 116, 4099-4102.	0.6	1,152
46	Liver Resection for Metastatic Melanoma with Postoperative Tumor-Infiltrating Lymphocyte Therapy. Annals of Surgical Oncology, 2010, 17, 163-170.	0.7	28
47	Thoracic metastasectomy for adoptive immunotherapy of melanoma: A single-institution experience. Journal of Thoracic and Cardiovascular Surgery, 2010, 140, 1276-1282.	0.4	13
48	Successful Treatment of Melanoma Brain Metastases with Adoptive Cell Therapy. Clinical Cancer Research, 2010, 16, 4892-4898.	3.2	166
49	CD8+ Enriched "Young―Tumor Infiltrating Lymphocytes Can Mediate Regression of Metastatic Melanoma. Clinical Cancer Research, 2010, 16, 6122-6131.	3.2	269
50	Case Report of a Serious Adverse Event Following the Administration of T Cells Transduced With a Chimeric Antigen Receptor Recognizing ERBB2. Molecular Therapy, 2010, 18, 843-851.	3.7	2,079
51	Single-pass, closed-system rapid expansion of lymphocyte cultures for adoptive cell therapy. Journal of Immunological Methods, 2009, 345, 90-99.	0.6	40
52	Adoptive cell therapy for the treatment of patients with metastatic melanoma. Current Opinion in Immunology, 2009, 21, 233-240.	2.4	539
53	Ocular and Systemic Autoimmunity after Successful Tumor-Infiltrating Lymphocyte Immunotherapy for Recurrent, Metastatic Melanoma. Ophthalmology, 2009, 116, 981-989.e1.	2.5	88
54	Impact of a Recombinant Fowlpox Vaccine on the Efficacy of Adoptive Cell Therapy With Tumor Infiltrating Lymphocytes in a Patient With Metastatic Melanoma. Journal of Immunotherapy, 2009, 32, 870-874.	1.2	16

#	Article	IF	CITATIONS
55	Tumor antigen–specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood, 2009, 114, 1537-1544.	0.6	1,481
56	Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood, 2009, 114, 535-546.	0.6	1,280
57	Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Reviews Cancer, 2008, 8, 299-308.	12.8	1,404
58	Adoptive Cell Therapy for Patients with Melanoma, Using Tumor-Infiltrating Lymphocytes Genetically Engineered to Secrete Interleukin-2. Human Gene Therapy, 2008, 19, 496-510.	1.4	119
59	Cancer Immunotherapy. New England Journal of Medicine, 2008, 359, 1072-1073.	13.9	45
60	Adoptive Cell Therapy for Patients With Metastatic Melanoma: Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens. Journal of Clinical Oncology, 2008, 26, 5233-5239.	0.8	1,210
61	Relationship of p53 Overexpression on Cancers and Recognition by Anti-p53 T Cell Receptor-Transduced T Cells. Human Gene Therapy, 2008, 19, 1219-1231.	1.4	38
62	Minimally Cultured Tumor-infiltrating Lymphocytes Display Optimal Characteristics for Adoptive Cell Therapy. Journal of Immunotherapy, 2008, 31, 742-751.	1.2	236
63	A T cell receptor associated with naturally occurring human tumor immunity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19073-19078.	3.3	37
64	Warrior, miscreant, suicide: making better killers. Blood, 2007, 110, 2781-2782.	0.6	1
65	Adoptive Cell Transfer Therapy. Seminars in Oncology, 2007, 34, 524-531.	0.8	100
66	Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes. Science, 2006, 314, 126-129.	6.0	2,352
67	Gene Transfer of Tumor-Reactive TCR Confers Both High Avidity and Tumor Reactivity to Nonreactive Peripheral Blood Mononuclear Cells and Tumor-Infiltrating Lymphocytes. Journal of Immunology, 2006, 177, 6548-6559.	0.4	287
68	Adoptive Transfer of Vaccine-Induced Peripheral Blood Mononuclear Cells to Patients with Metastatic Melanoma following Lymphodepletion. Journal of Immunology, 2006, 177, 6527-6539.	0.4	116
69	Survival, Persistence, and Progressive Differentiation of Adoptively Transferred Tumor-Reactive T Cells Associated with Tumor Regression. Journal of Immunotherapy, 2005, 28, 258-267.	1.2	171
70	Persistence of Multiple Tumor-Specific T-Cell Clones Is Associated with Complete Tumor Regression in a Melanoma Patient Receiving Adoptive Cell Transfer Therapy. Journal of Immunotherapy, 2005, 28, 53-62.	1.2	198
71	Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood, 2005, 105, 241-250.	0.6	273
72	Adoptive Cell Transfer Therapy Following Non-Myeloablative but Lymphodepleting Chemotherapy for the Treatment of Patients With Refractory Metastatic Melanoma. Journal of Clinical Oncology, 2005, 23, 2346-2357.	0.8	1,452

#	Article	IF	CITATIONS
73	Transfer of a TCR Gene Derived from a Patient with a Marked Antitumor Response Conveys Highly Active T-Cell Effector Functions. Human Gene Therapy, 2005, 16, 457-472.	1.4	218
74	T Cells Associated with Tumor Regression Recognize Frameshifted Products of the <i>CDKN2A</i> Tumor Suppressor Gene Locus and a Mutated HLA Class I Gene Product. Journal of Immunology, 2004, 172, 6057-6064.	0.4	114
75	Selective Growth, In Vitro and In Vivo, of Individual T Cell Clones from Tumor-Infiltrating Lymphocytes Obtained from Patients with Melanoma. Journal of Immunology, 2004, 173, 7622-7629.	0.4	48
76	Cutting Edge: Persistence of Transferred Lymphocyte Clonotypes Correlates with Cancer Regression in Patients Receiving Cell Transfer Therapy. Journal of Immunology, 2004, 173, 7125-7130.	0.4	442
77	Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14639-14645.	3.3	323
78	Proteasomal cleavage does not determine immunogenicity of gp100-derived peptides gp100209-217 and gp100209-217T210M. Cancer Immunology, Immunotherapy, 2004, 53, 817-24.	2.0	12
79	Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nature Reviews Cancer, 2003, 3, 666-675.	12.8	587
80	High Efficiency TCR Gene Transfer into Primary Human Lymphocytes Affords Avid Recognition of Melanoma Tumor Antigen Glycoprotein 100 and Does Not Alter the Recognition of Autologous Melanoma Antigens. Journal of Immunology, 2003, 171, 3287-3295.	0.4	219
81	To Bead or Not to Bead. Journal of Immunotherapy, 2003, 26, 187-189.	1.2	6
82	Generation of Tumor-Infiltrating Lymphocyte Cultures for Use in Adoptive Transfer Therapy for Melanoma Patients. Journal of Immunotherapy, 2003, 26, 332-342.	1.2	598
83	Cell Transfer Therapy for Cancer: Lessons from Sequential Treatments of a Patient With Metastatic Melanoma. Journal of Immunotherapy, 2003, 26, 385-393.	1.2	58
84	Functional Heterogeneity of Vaccine-Induced CD8+ T Cells. Journal of Immunology, 2002, 168, 5933-5942.	0.4	89
85	Cancer Regression and Autoimmunity in Patients After Clonal Repopulation with Antitumor Lymphocytes. Science, 2002, 298, 850-854.	6.0	2,598
86	A Phase I Study of Nonmyeloablative Chemotherapy and Adoptive Transfer of Autologous Tumor Antigen-Specific T Lymphocytes in Patients With Metastatic Melanoma. Journal of Immunotherapy, 2002, 25, 243-251.	1.2	326
87	A stimulating presentation. Nature Biotechnology, 2002, 20, 125-126.	9.4	1
88	A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. Journal of Immunotherapy, 2002, 25, 243-51.	1.2	139
89	TCR stimulation protects CD8+ T cells from CD95 mediated apoptosis. Human Immunology, 2001, 62, 32-38.	1.2	11
90	Adoptive Transfer of Cloned Melanoma-Reactive T Lymphocytes for the Treatment of Patients with Metastatic Melanoma. Journal of Immunotherapy, 2001, 24, 363-373.	1.2	337

#	Article	IF	CITATIONS
91	Efficient Chromosomal Mapping of a Methylcholanthrene- Induced Tumor Antigen by CTL Immunoselection. Journal of Immunology, 2001, 167, 5143-5149.	0.4	3
92	Kinetics of TCR Use in Response to Repeated Epitope-Specific Immunization. Journal of Immunology, 2001, 166, 5817-5825.	0.4	56
93	Expansion and Characterization of T Cells Transduced with a Chimeric Receptor against Ovarian Cancer. Human Gene Therapy, 2000, 11, 2377-2387.	1.4	54
94	Cutting Edge: CD4+T Cell Control of CD8+T Cell Reactivity to a Model Tumor Antigen. Journal of Immunology, 2000, 164, 562-565.	0.4	161
95	Antitumor Immunization with a Minimal Peptide Epitope (G9–209–2M) Leads to a Functionally Heterogeneous CTL Response. Journal of Immunotherapy, 1999, 22, 288-298.	1.2	73
96	Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature Medicine, 1998, 4, 321-327.	15.2	1,693
97	Gene Mapping in a Murine Cell Line by Immunoselection with Cytotoxic T Lymphocytes. Genomics, 1994, 19, 273-279.	1.3	17