Massimo Pigliucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10712926/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	More than provocative, less than scientific: A commentary on the editorial decision to publish Cofnas (2020). Philosophical Psychology, 2020, 33, 893-898.	0.9	3
2	The power of meaning: the quest for an existential roadmap. Annals of the New York Academy of Sciences, 2018, 1432, 10-28.	3.8	0
3	Is there a will to meaning?. Annals of the New York Academy of Sciences, 2018, 1432, 63-65.	3.8	2
4	Why Do Irrational Beliefs Mimic Science? The Cultural Evolution of Pseudoscience. Theoria (Stockholm), 2017, 83, 78-97.	0.2	32
5	The Fake, the Flimsy, and the Fallacious: Demarcating Arguments in Real Life. Argumentation, 2015, 29, 431-456.	1.0	36
6	Scientism and Pseudoscience: A Philosophical Commentary. Journal of Bioethical Inquiry, 2015, 12, 569-575.	1.5	15
7	Gould on Morton, Redux: What can the debate reveal about the limits of data?. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2015, 52, 22-31.	1.3	11
8	The proximate–ultimate distinction and evolutionary developmental biology: causal irrelevance versus explanatory abstraction. Biology and Philosophy, 2015, 30, 653-670.	1.4	20
9	What makes weird beliefs thrive? The epidemiology of pseudoscience. Philosophical Psychology, 2015, 28, 1177-1198.	0.9	44
10	The Extended (Evolutionary) Synthesis Debate: Where Science Meets Philosophy. BioScience, 2014, 64, 511-516.	4.9	48
11	Prove it! The Burden of Proof Game in Science vs. Pseudoscience Disputes. Philosophia (United States), 2014, 42, 487-502.	0.4	32
12	Between holism and reductionism: a philosophical primer on emergence. Biological Journal of the Linnean Society, 2014, 112, 261-267.	1.6	15
13	The Meaning of "Theory―in Biology. Biological Theory, 2013, 7, 285-286.	1.5	2
14	The mismeasure of machine: Synthetic biology and the trouble with engineering metaphors. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2013, 44, 660-668.	1.3	61
15	Human races. Current Biology, 2013, 23, R185-R187.	3.9	8
16	When Science Studies Religion: Six Philosophy Lessons for Science Classes. Science and Education, 2013, 22, 49-67.	2.7	2
17	What are we to make of the concept of race?. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2013, 44, 272-277.	1.3	17
18	The Nature of Evolutionary Biology: At the Borderlands Between Historical and Experimental Science. History, Philosophy and Theory of the Life Sciences, 2013, , 87-100.	0.4	2

#	Article	IF	CITATIONS
19	On the Different Ways of "Doing Theory―in Biology. Biological Theory, 2013, 7, 287-297.	1.5	12
20	Philosophical reflections on Darwin and evolutionary theory. Trends in Ecology and Evolution, 2012, 27, 258.	8.7	0
21	Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecology Letters, 2012, 15, 1016-1025.	6.4	285
22	EVOLUTION AND ITS MAJOR TRANSITIONS. Evolution; International Journal of Organic Evolution, 2011, 65, 3642-3644.	2.3	1
23	Why Machine-Information Metaphors are Bad for Science and Science Education. Science and Education, 2011, 20, 453-471.	2.7	55
24	Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evolutionary Ecology, 2010, 24, 541-553.	1.2	187
25	A comprehensive test of the â€~limiting resources' framework applied to plant tolerance to apical meristem damage. Oikos, 2010, 119, 359-369.	2.7	27
26	Lindsay Craig—The So-Called Extended Synthesis and Population Genetics (Biological Theory 5: 117–123,) T	j ETQq0 0	0 rgBT /Overl
27	Genotype–phenotype mapping and the end of the â€~genes as blueprint' metaphor. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 557-566.	4.0	214
28	Selection Dynamics in Native and Introduced <i>Persicaria</i> Species. International Journal of Plant Sciences, 2010, 171, 519-528.	1.3	10
29	Elements of an Extended Evolutionary Synthesis. , 2010, , 3-18.		79
30	What Role Does Heritable Epigenetic Variation Play in Phenotypic Evolution?. BioScience, 2010, 60, 232-237.	4.9	175
31	Samir Okasha: Evolution and the levels of selection. Biology and Philosophy, 2009, 24, 551-560.	1.4	3
32	Plasticity to wind is modular and genetically variable in Arabidopsis thaliana. Evolutionary Ecology, 2009, 23, 669-685.	1.2	23
33	An Extended Synthesis for Evolutionary Biology. Annals of the New York Academy of Sciences, 2009, 1168, 218-228.	3.8	150
34	Epigenetics for ecologists. Ecology Letters, 2008, 11, 106-115.	6.4	804
35	Sewall Wright's adaptive landscapes: 1932 vs. 1988. Biology and Philosophy, 2008, 23, 591-603	1.4	45
36	ls evolvability evolvable?. Nature Reviews Genetics, 2008, 9, 75-82.	16.3	461

#	Article	IF	CITATIONS
37	The Borderlands Between Science And Philosophy: An Introduction. Quarterly Review of Biology, 2008, 83, 7-15.	0.1	14
38	The Proper Role of Population Genetics in Modern Evolutionary Theory. Biological Theory, 2008, 3, 316-324.	1.5	19
39	What, if Anything, Is an Evolutionary Novelty?. Philosophy of Science, 2008, 75, 887-898.	1.0	116
40	Plasticity in salt tolerance traits allows for invasion of novel habitat by Japanese knotweed s. l. (Fallopia japonica and F.xbohemica, Polygonaceae). American Journal of Botany, 2008, 95, 931-942.	1.7	98
41	Postgenomic Musings. Science, 2007, 317, 1172-1173.	12.6	3
42	Finding the Way in Phenotypic Space: The Origin and Maintenance of Constraints on Organismal Form. Annals of Botany, 2007, 100, 433-438.	2.9	32
43	THE SOCIETY FOR THE STUDY OF EVOLUTION. Evolution; International Journal of Organic Evolution, 2007, 55, 1075-1075.	2.3	0
44	Implementation of a novel framework for assessing species plasticity in biological invasions: responses of <i>Centaurea</i> and <i>Crepis</i> to phosphorus and water availability. Journal of Ecology, 2007, 95, 1001-1013.	4.0	56
45	EVIDENCE OF LOCAL ADAPTATION TO COARSE-GRAINED ENVIRONMENTAL VARIATION IN ARABIDOPSIS THALIANA. Evolution; International Journal of Organic Evolution, 2007, 61, 2419-2432.	2.3	29
46	DO WE NEED AN EXTENDED EVOLUTIONARY SYNTHESIS?. Evolution; International Journal of Organic Evolution, 2007, 61, 2743-2749.	2.3	376
47	Primates, philosophers and the biological basis of morality: a review of primates and philosophers by Frans De Waal, Princeton University Press, 2006, 200 pp. Biology and Philosophy, 2007, 22, 611-618.	1.4	2
48	EVOLUTIONARY BIOLOGY: PUZZLE SOLVING OR PARADIGM SHIFTING?. Quarterly Review of Biology, 2006, 81, 377-379.	0.1	1
49	Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology, 2006, 209, 2362-2367.	1.7	806
50	Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 2006, 9, 981-993.	6.4	1,063
51	Genetic Variance–covariance Matrices: A Critique of the Evolutionary Quantitative Genetics Research Program. Biology and Philosophy, 2006, 21, 1-23.	1.4	56
52	Traits of invasives reconsidered: phenotypic comparisons of introduced invasive and introduced noninvasive plant species within two closely related clades. American Journal of Botany, 2006, 93, 188-196.	1.7	85
53	Science and fundamentalism. EMBO Reports, 2005, 6, 1106-1109.	4.5	10
54	Relationships Between Vegetative and Life History Traits and Fitness in a Novel Field Environment: Impacts of Herbivores. Evolutionary Ecology, 2005, 19, 583-601.	1.2	20

#	Article	IF	CITATIONS
55	Morphological responses to simulated wind in the genus <i>Brassica</i> (Brassicaceae): allopolyploids and their parental species. American Journal of Botany, 2005, 92, 810-818.	1.7	19
56	Evolution of phenotypic plasticity: where are we going now?. Trends in Ecology and Evolution, 2005, 20, 481-486.	8.7	986
57	ls Knowledge of Science Associated with Higher Skepticism of Pseudoscientific Claims?. American Biology Teacher, 2004, 66, 536-548.	0.2	36
58	From molecules to phenotypes? – The promise and limits of integrative biology. Basic and Applied Ecology, 2003, 4, 297-306.	2.7	13
59	Species as family resemblance concepts: The (dis-)solution of the species problem?. BioEssays, 2003, 25, 596-602.	2.5	135
60	Phenotypic integration: studying the ecology and evolution of complex phenotypes. Ecology Letters, 2003, 6, 265-272.	6.4	395
61	PERSPECTIVE: GENETIC ASSIMILATION AND A POSSIBLE EVOLUTIONARY PARADOX: CAN MACROEVOLUTION SOMETIMES BE SO FAST AS TO PASS US BY?. Evolution; International Journal of Organic Evolution, 2003, 57, 1455-1464.	2.3	228
62	On the Relationship between Science and Ethics. Zygon, 2003, 38, 871-894.	0.4	11
63	On the Concept of Biological Race and Its Applicability to Humans. Philosophy of Science, 2003, 70, 1161-1172.	1.0	64
64	SELECTION IN A MODEL SYSTEM: ECOLOGICAL GENETICS OF FLOWERING TIME IN ARABIDOPSIS THALIANA. Ecology, 2003, 84, 1700-1712.	3.2	22
65	PERSPECTIVE: GENETIC ASSIMILATION AND A POSSIBLE EVOLUTIONARY PARADOX: CAN MACROEVOLUTION SOMETIMES BE SO FAST AS TO PASS US BY?. Evolution; International Journal of Organic Evolution, 2003, 57, 1455.	2.3	143
66	Comparative Studies of Evolutionary Responses to Light Environments inArabidopsis. American Naturalist, 2003, 161, 68-82.	2.1	45
67	Epigenetics is Back! HSP90 and Phenotypic Variation. Cell Cycle, 2003, 2, 34-35.	2.6	24
68	Phenotypic Plasticity and Integration in Response to Flooded Conditions in Natural Accessions of Arabidopsis thaliana (L.) Heynh (Brassicaceae). Annals of Botany, 2002, 90, 199-207.	2.9	43
69	SHADE-INDUCED PLASTICITY AND ITS ECOLOGICAL SIGNIFICANCE IN WILD POPULATIONS OF ARABIDOPSIS THALIANA. Ecology, 2002, 83, 1965-1980.	3.2	111
70	Evolution of phenotypic integration in <i>Brassica</i> (Brassicaceae). American Journal of Botany, 2002, 89, 655-663.	1.7	38
71	Touchy and Bushy: Phenotypic Plasticity and Integration in Response to Wind Stimulation inArabidopsis thaliana. International Journal of Plant Sciences, 2002, 163, 399-408.	1.3	37
72	Ecology and Evolutionary Biology of Arabidopsis. The Arabidopsis Book, 2002, 1, e0003.	0.5	32

#	Article	IF	CITATIONS
73	Buffer zone. Nature, 2002, 417, 598-599.	27.8	31
74	Phenotypic plasticity to light intensity in Arabidopsis thaliana: invariance of reaction norms and phenotypic integration. Evolutionary Ecology, 2002, 16, 27-47.	1.2	56
75	Differentiation for flowering time and phenotypic integration in Arabidopsis thaliana in response to season length and vernalization. Oecologia, 2001, 127, 501-508.	2.0	51
76	Phenotypic plasticity is the major determinant of changes in phenotypic integration inArabidopsis. New Phytologist, 2001, 152, 419-430.	7.3	31
77	Genes `for' Phenotypes: A Modern History View. Biology and Philosophy, 2001, 16, 189-213.	1.4	41
78	Characters and Environments. , 2001, , 363-388.		11
79	The fall and rise of Dr Pangloss: adaptationism and the Spandrels paper 20 years later. Trends in Ecology and Evolution, 2000, 15, 66-70.	8.7	178
80	Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants. Perspectives in Plant Ecology, Evolution and Systematics, 2000, 3, 1-18.	2.7	119
81	Manipulative Approaches to Testing Adaptive Plasticity: Phytochromeâ€Mediated Shadeâ€Avoidance Responses in Plants. American Naturalist, 1999, 154, S43-S54.	2.1	210
82	Mutational Contributions to Genetic Variance-Covariance Matrices: An Experimental Approach Using Induced Mutations in Arabidopsis thaliana. Evolution; International Journal of Organic Evolution, 1999, 53, 1692.	2.3	27
83	MUTATIONAL CONTRIBUTIONS TO GENETIC VARIANCEâ€COVARIANCE MATRICES: AN EXPERIMENTAL APPROACH USING INDUCED MUTATIONS IN <i>ARABIDOPSIS THALIANA</i> . Evolution; International Journal of Organic Evolution, 1999, 53, 1692-1703.	┨ 2.3	63
84	Genetics and evolution of phenotypic plasticity to nutrient stress in Arabidopsis: drift, constraints or selection?. Biological Journal of the Linnean Society, 1998, 64, 17-40.	1.6	16
85	Developmental phenotypic plasticity: Where internalprogramming meets the external environment. Current Opinion in Plant Biology, 1998, 1, 87-91.	7.1	56
86	Mutational effects on constraints on character evolution and phenotypic plasticity inArabidopsis thaliana. Journal of Genetics, 1998, 77, 95-103.	0.7	10
87	Ecological and evolutionary genetics of Arabidopsis. Trends in Plant Science, 1998, 3, 485-489.	8.8	53
88	Ontogenetic phenotypic plasticity during the reproductive phase in Arabidopsis thaliana (Brassicaceae). American Journal of Botany, 1997, 84, 887-895.	1.7	48
89	Phenotypic Plasticity of Growth Trajectories in Two Species of Lobelia in Response to Nutrient Availability. Journal of Ecology, 1997, 85, 265.	4.0	60
90	Sewall Wright meets artificial life. Trends in Ecology and Evolution, 1997, 12, 161-162.	8.7	2

#	Article	IF	CITATIONS
91	On the Limits of Quantitative Genetics for the Study of Phenotypic Evolution. Acta Biotheoretica, 1997, 45, 143-160.	1.5	47
92	Butterflies in the spotlight. BioEssays, 1997, 19, 285-286.	2.5	0
93	Developmental phenotypic plasticity: Where ecology and evolution meet molecular biology. BioEssays, 1997, 19, 519-525.	2.5	104
94	Reply from M. Pigliucci. Trends in Ecology and Evolution, 1996, 11, 384.	8.7	2
95	Modelling phenotypic plasticity. II. Do genetic correlations matter?. Heredity, 1996, 77, 453-460.	2.6	23
96	Reaction norms of Arabidopsis. IV. Relationships between plasticity and fitness. Heredity, 1996, 76, 427-436.	2.6	62
97	Gene regulation, quantitative genetics and the evolution of reaction norms. Evolutionary Ecology, 1995, 9, 154-168.	1.2	192
98	R eaction norms of A rabidopsis (Brassicaceae). III. R esponse to nutrients in 26 populations from a worldwide collection. American Journal of Botany, 1995, 82, 1117-1125.	1.7	54
99	Ontogenetic Reaction Norms in Lobelia Siphilitica (Lobeliaceae): Response to Shading. Ecology, 1995, 76, 2134-2144.	3.2	67
100	Reaction Norms of Arabidopsis (Brassicaceae). III. Response to Nutrients in 26 Populations from a Worldwide Collection. American Journal of Botany, 1995, 82, 1117.	1.7	26
101	Control of Phenotypic Plasticity Via Regulatory Genes. American Naturalist, 1993, 142, 366-370.	2.1	205
102	Modelling phenotypic plasticity. I. Linear and higher-order effects of dominance, drift, environmental frequency and selection on a one-locus, two-allele model. Journal of Genetics, 1992, 71, 135-150.	0.7	4
103	Phenotypic Integration in Chestnut (Castanea sativa Mill.): Leaves versus Fruits. Botanical Gazette, 1991, 152, 514-521.	0.6	21