List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10712119/publications.pdf Version: 2024-02-01

MARK YOUNG

#	Article	IF	CITATIONS
1	Host–guest encapsulation of materials by assembled virus protein cages. Nature, 1998, 393, 152-155.	27.8	887
2	Inorganic-Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus. Advanced Materials, 1999, 11, 253-256.	21.0	698
3	Viruses: Making Friends with Old Foes. Science, 2006, 312, 873-875.	12.6	568
4	Plant Viruses as Biotemplates for Materials and Their Use in Nanotechnology. Annual Review of Phytopathology, 2008, 46, 361-384.	7.8	233
5	From The Cover: The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7716-7720.	7.1	219
6	Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magnetic Resonance in Medicine, 2005, 54, 807-812.	3.0	198
7	Virus Particles as Templates for Materials Synthesis. Advanced Materials, 1999, 11, 679-681.	21.0	189
8	Assembly of Viral Metagenomes from Yellowstone Hot Springs. Applied and Environmental Microbiology, 2008, 74, 4164-4174.	3.1	189
9	Metagenomes from High-Temperature Chemotrophic Systems Reveal Geochemical Controls on Microbial Community Structure and Function. PLoS ONE, 2010, 5, e9773.	2.5	186
10	Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18944-18949.	7.1	169
11	Constrained Synthesis of Cobalt Oxide Nanomaterials in the 12-Subunit Protein Cage fromListeria innocua. Inorganic Chemistry, 2003, 42, 6300-6305.	4.0	152
12	Chemical modification of a viral cage for multivalent presentation. Chemical Communications, 2002, , 2390-2391.	4.1	151
13	Comparative Genomic Analysis of Hyperthermophilic Archaeal Fuselloviridae Viruses. Journal of Virology, 2004, 78, 1954-1961.	3.4	131
14	Viral capsids as MRI contrast agents. Magnetic Resonance in Medicine, 2007, 58, 871-879.	3.0	120
15	Comparative Metagenomics of Eight Geographically Remote Terrestrial Hot Springs. Microbial Ecology, 2015, 70, 411-424.	2.8	118
16	Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea-Dominated Yellowstone Hot Springs. Journal of Virology, 2012, 86, 5562-5573.	3.4	107
17	2-D Array Formation of Genetically Engineered Viral Cages on Au Surfaces and Imaging by Atomic Force Microscopy. Journal of the American Chemical Society, 2003, 125, 10806-10807.	13.7	106
18	Biomimetic magnetic nanoparticles. Materials Today, 2005, 8, 28-37.	14.2	100

#	Article	IF	CITATIONS
19	Targeting and Photodynamic Killing of a Microbial Pathogen Using Protein Cage Architectures Functionalized with a Photosensitizer. Langmuir, 2007, 23, 12280-12286.	3.5	97
20	Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. Journal of General Virology, 2004, 85, 1049-1053.	2.9	96
21	Synthetic Control over Magnetic Moment and Exchange Bias in All-Oxide Materials Encapsulated within a Spherical Protein Cage. Journal of the American Chemical Society, 2007, 129, 197-201.	13.7	91
22	Photochemical Mineralization of Europium, Titanium, and Iron Oxyhydroxide Nanoparticles in the Ferritin Protein Cage. Inorganic Chemistry, 2008, 47, 2237-2239.	4.0	85
23	Photocatalytic Synthesis of Copper Colloids from Cu(II) by the Ferrihydrite Core of Ferritin. Inorganic Chemistry, 2004, 43, 3441-3446.	4.0	79
24	Synthesis of a Cross-Linked Branched Polymer Network in the Interior of a Protein Cage. Journal of the American Chemical Society, 2009, 131, 4346-4354.	13.7	77
25	Biomimetic synthesis of β-TiO2 inside a viral capsid. Journal of Materials Chemistry, 2008, 18, 3821.	6.7	75
26	Controlled Assembly of Bifunctional Chimeric Protein Cages and Composition Analysis Using Noncovalent Mass Spectrometry. Journal of the American Chemical Society, 2008, 130, 16527-16529.	13.7	69
27	Assembly of Multilayer Films Incorporating a Viral Protein Cage Architecture. Langmuir, 2006, 22, 8891-8896.	3.5	66
28	A Streptavidinâ^'Protein Cage Janus Particle for Polarized Targeting and Modular Functionalization. Journal of the American Chemical Society, 2009, 131, 9164-9165.	13.7	63
29	Controlled Ligand Display on a Symmetrical Protein-Cage Architecture Through Mixed Assembly. Small, 2006, 2, 962-966.	10.0	61
30	Hot crenarchaeal viruses reveal deep evolutionary connections. Nature Reviews Microbiology, 2006, 4, 520-528.	28.6	59
31	High-Density Targeting of a Viral Multifunctional Nanoplatform to a Pathogenic, Biofilm-Forming Bacterium. Chemistry and Biology, 2007, 14, 387-398.	6.0	58
32	Structural transitions in Cowpea chlorotic mottle virus (CCMV). Physical Biology, 2005, 2, S166-S172.	1.8	54
33	Archaeal Viruses from High-Temperature Environments. Genes, 2018, 9, 128.	2.4	54
34	Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs. Environmental Microbiology, 2016, 18, 863-874.	3.8	53
35	Metal binding to cowpea chlorotic mottle virus using terbium(III) fluorescence. Journal of Biological Inorganic Chemistry, 2003, 8, 721-725.	2.6	52
36	Influence of Electrostatic Interactions on the Surface Adsorption of a Viral Protein Cage. Langmuir, 2005, 21, 8686-8693.	3.5	47

#	Article	IF	CITATIONS
37	Structure of A197 from Sulfolobus Turreted Icosahedral Virus: a Crenarchaeal Viral Glycosyltransferase Exhibiting the GT-A Fold. Journal of Virology, 2006, 80, 7636-7644.	3.4	47
38	Janus-like Protein Cages. Spatially Controlled Dual-Functional Surface Modifications of Protein Cages. Nano Letters, 2009, 9, 2360-2366.	9.1	47
39	Surface contribution to the anisotropy energy of spherical magnetite particles. Journal of Applied Physics, 2005, 97, 10B301.	2.5	44
40	Monitoring Biomimetic Platinum Nanocluster Formation Using Mass Spectrometry and Clusterâ€Dependent H ₂ Production. Angewandte Chemie - International Edition, 2008, 47, 7845-7848.	13.8	40
41	Expanding the Temperature Range of Biomimetic Synthesis Using a Ferritin from the Hyperthermophile <i>Pyrococcus furiosus</i> . Chemistry of Materials, 2008, 20, 1541-1547.	6.7	32
42	Targeted Delivery of a Photosensitizer to <i>Aggregatibacter actinomycetemcomitans</i> Biofilm. Antimicrobial Agents and Chemotherapy, 2010, 54, 2489-2496.	3.2	30
43	Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance. Journal of Magnetism and Magnetic Materials, 2009, 321, 175-180.	2.3	29
44	Protein cage nanoparticles as secondary building units for the synthesis of 3-dimensional coordination polymers. Soft Matter, 2010, 6, 3167.	2.7	27
45	From Metal Binding to Nanoparticle Formation: Monitoring Biomimetic Iron Oxide Synthesis within Protein Cages using Mass Spectrometry. Angewandte Chemie - International Edition, 2009, 48, 4772-4776.	13.8	26
46	Biomimetic synthesis of photoactive α-Fe ₂ O ₃ templated by the hyperthermophilic ferritin from Pyrococus furiosus. Journal of Materials Chemistry, 2010, 20, 65-67.	6.7	21
47	Large Tailed Spindle Viruses of Archaea: a New Way of Doing Viral Business. Journal of Virology, 2015, 89, 9146-9149.	3.4	19
48	Temperature dependence of electron magnetic resonance spectra of iron oxide nanoparticles mineralized in <i>Listeria innocua</i> protein cages. Journal of Applied Physics, 2012, 112, 84701.	2.5	18
49	The intriguing world of archaeal viruses. PLoS Pathogens, 2020, 16, e1008574.	4.7	16
50	Genetics, biochemistry and structure of the archaeal virus STIV. Biochemical Society Transactions, 2009, 37, 114-117.	3.4	14
51	Two-component magnetic structure of iron oxide nanoparticles mineralized in <i>Listeria innocua</i> protein cages. Journal of Applied Physics, 2010, 107, .	2.5	13
52	Bioprospecting in high temperature environments; application of thermostable protein cages. Soft Matter, 2007, 3, 1091.	2.7	11
53	Monitoring Structural Transitions in Icosahedral Virus Protein Cages by Site-Directed Spin Labeling. Journal of the American Chemical Society, 2011, 133, 4156-4159.	13.7	11
54	Signal ampflication using nanoplatform cluster formation. Soft Matter, 2008, 4, 2519.	2.7	10

#	Article	IF	CITATIONS
55	A Survey of Protein Structures from Archaeal Viruses. Life, 2013, 3, 118-130.	2.4	6
56	In-Plane Ordering of a Genetically Engineered Viral Protein Cage. Journal of Adhesion, 2009, 85, 69-77.	3.0	4
57	Viruses as Host Assemblies. , 2004, , 1563-1568.		1
58	Biomimetic Synthesis of an Active H2 Catalyst Using the Ferritin Protein Cage Architecture. ACS Symposium Series, 2008, , 263-272.	0.5	1