Jie Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10712065/publications.pdf

Version: 2024-02-01

35	7,074	29 h-index	35
papers	citations		g-index
36	36	36	10052
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano, 2008, 2, 889-896.	14.6	1,758
2	Biocompatibility, Biodistribution, and Drugâ€Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals. Small, 2010, 6, 1794-1805.	10.0	947
3	Mesoporous Silica Nanoparticles as a Delivery System for Hydrophobic Anticancer Drugs. Small, 2007, 3, 1341-1346.	10.0	927
4	Lightâ€Activated Nanoimpellerâ€Controlled Drug Release in Cancer Cells. Small, 2008, 4, 421-426.	10.0	430
5	Identification of Arctigenin as an Antitumor Agent Having the Ability to Eliminate the Tolerance of Cancer Cells to Nutrient Starvation. Cancer Research, 2006, 66, 1751-1757.	0.9	301
6	Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Advanced Drug Delivery Reviews, 2015, 95, 40-49.	13.7	228
7	Mesoporous Silica Nanoparticles Facilitate Delivery of siRNA to Shutdown Signaling Pathways in Mammalian Cells. Small, 2010, 6, 1185-1190.	10.0	215
8	Synthesis of Biomoleculeâ€Modified Mesoporous Silica Nanoparticles for Targeted Hydrophobic Drug Delivery to Cancer Cells. Small, 2011, 7, 1816-1826.	10.0	204
9	In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 212-220.	3.3	192
10	Mesoporous Silica Nanoparticles for Cancer Therapy: Energy-Dependent Cellular Uptake and Delivery of Paclitaxel to Cancer Cells. Nanobiotechnology, 2007, 3, 89-95.	1.2	175
11	Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. Journal of Controlled Release, 2016, 229, 183-191.	9.9	149
12	Involvement of Lysosomal Exocytosis in the Excretion of Mesoporous Silica Nanoparticles and Enhancement of the Drug Delivery Effect by Exocytosis Inhibition. Small, 2013, 9, 697-704.	10.0	137
13	Identification of a Novel Protein Kinase Mediating Akt Survival Signaling to the ATM Protein. Journal of Biological Chemistry, 2003, 278, 48-53.	3.4	123
14	Antitumor activity of pyrvinium pamoate, 6-(dimethylamino)-2-[2-(2,5-dimethyl-1-phenyl-1H-pyrrol-3-yl)ethenyl]-1-methyl-quinolinium pamoate salt, showing preferential cytotoxicity during glucose starvation. Cancer Science, 2004, 95, 685-690.	3.9	117
15	ARK5 Is a Tumor Invasion-Associated Factor Downstream of Akt Signaling. Molecular and Cellular Biology, 2004, 24, 3526-3535.	2.3	112
16	Twoâ€Photonâ€Triggered Drug Delivery via Fluorescent Nanovalves. Small, 2014, 10, 1752-1755.	10.0	106
17	Kigamicin D, a novel anticancer agent based on a new anti-austerity strategy targeting cancer cells' tolerance to nutrient starvation. Cancer Science, 2004, 95, 547-552.	3.9	103
18	Twoâ€Photonâ€Triggered Drug Delivery in Cancer Cells Using Nanoimpellers. Angewandte Chemie - International Edition, 2013, 52, 13813-13817.	13.8	94

#	Article	IF	CITATIONS
19	Angelmarin, a novel anti-cancer agent able to eliminate the tolerance of cancer cells to nutrient starvation. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 581-583.	2.2	93
20	Biodegradable Oxamideâ€Phenyleneâ€Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells. Chemistry - A European Journal, 2016, 22, 14806-14811.	3.3	81
21	ARK5 suppresses the cell death induced by nutrient starvation and death receptors via inhibition of caspase 8 activation, but not by chemotherapeutic agents or UV irradiation. Oncogene, 2003, 22, 6177-6182.	5.9	79
22	<i>In vivo</i> antitumor effect of a novel inhibitor of protein geranylgeranyltransferase-I. Molecular Cancer Therapeutics, 2009, 8, 1218-1226.	4.1	72
23	Silica nanoparticles as a delivery system for nucleic acid-based reagents. Journal of Materials Chemistry, 2009, 19, 6308.	6.7	72
24	Functional Nanovalves on Protein-Coated Nanoparticles for In vitro and In vivo Controlled Drug Delivery. Small, 2015, 11, 319-328.	10.0	65
25	Kigamicins, Novel Antitumor Antibiotics: I. Taxonomy, Isolation, Physico-chemical Properties and Biological Activities. Journal of Antibiotics, 2003, 56, 1004-1011.	2.0	49
26	Periodic Mesoporous Organosilica Nanoparticles with Controlled Morphologies and High Drug/Dye Loadings for Multicargo Delivery in Cancer Cells. Chemistry - A European Journal, 2016, 22, 9607-9615.	3.3	46
27	Kigamicins, Novel Antitumor Antibiotics: II. Structure Determination. Journal of Antibiotics, 2003, 56, 1012-1017.	2.0	40
28	Hybrid Mesoporous Silica Nanoparticles with pHâ€Operated and Complementary Hâ€Bonding Caps as an Autonomous Drugâ€Delivery System. Chemistry - A European Journal, 2014, 20, 9372-9380.	3.3	40
29	Significance of KRAS/PAK1/Crk pathway in non-small cell lung cancer oncogenesis. BMC Cancer, 2015, 15, 381.	2.6	26
30	Drug Release from Threeâ€Dimensional Cubic Mesoporous Silica Nanoparticles Controlled by Nanoimpellers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 588-594.	1.2	13
31	Recent Progress in Developing Small Molecule Inhibitors Designed to Interfere with Ras Membrane Association. The Enzymes, 2013, 34 Pt. B, 181-200.	1.7	12
32	In vitro delivery of calcium ions by nanogated mesoporous silica nanoparticles to induce cancer cellular apoptosis. Molecular Systems Design and Engineering, 2017, 2, 384-392.	3.4	12
33	Nanoformulation of Geranylgeranyltransferase-I Inhibitors for Cancer Therapy: Liposomal Encapsulation and pH-Dependent Delivery to Cancer Cells. PLoS ONE, 2015, 10, e0137595.	2.5	9
34	Nanoparticle-Based Delivery of siRNA and miRNA for Cancer Therapy. The Enzymes, 2012, , 185-203.	1.7	3
35	Frontispiece: Biodegradable Oxamideâ€Phenyleneâ€Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells. Chemistry - A European Journal, 2016, 22, .	3.3	0