
Jiaguang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1071189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy and Environmental Science, 2016, 9, 3314-3347.	30.8	556
2	Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nature Communications, 2017, 8, 16100.	12.8	545
3	A Series of NiM (M = Ru, Rh, and Pd) Bimetallic Catalysts for Effective Lignin Hydrogenolysis in Water. ACS Catalysis, 2014, 4, 1574-1583.	11.2	421
4	Stabilizing a Platinum ₁ Singleâ€Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity. Angewandte Chemie - International Edition, 2016, 55, 8319-8323.	13.8	350
5	Downstream processing of lignin derived feedstock into end products. Chemical Society Reviews, 2020, 49, 5510-5560.	38.1	305
6	Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chemistry, 2014, 16, 2432-2437.	9.0	239
7	Production of Terephthalic Acid from Corn Stover Lignin. Angewandte Chemie - International Edition, 2019, 58, 4934-4937.	13.8	164
8	Transformation of Chitin and Waste Shrimp Shells into Acetic Acid and Pyrrole. ACS Sustainable Chemistry and Engineering, 2016, 4, 3912-3920.	6.7	154
9	Base promoted hydrogenolysis of lignin model compounds and organosolv lignin over metal catalysts in water. Chemical Engineering Science, 2015, 123, 155-163.	3.8	153
10	Conversion of chitin derived N-acetyl- <scp>d</scp> -glucosamine (NAG) into polyols over transition metal catalysts and hydrogen in water. Green Chemistry, 2015, 17, 1024-1031.	9.0	94
11	Acid-Catalyzed Chitin Liquefaction in Ethylene Glycol. ACS Sustainable Chemistry and Engineering, 2014, 2, 2081-2089.	6.7	93
12	Thermoresponsive polymers based on poly-vinylpyrrolidone: applications in nanoparticle catalysis. Chemical Communications, 2010, 46, 1631.	4.1	91
13	Chitinâ€Derived Mesoporous, Nitrogenâ€Containing Carbon for Heavyâ€Metal Removal and Styrene Epoxidation. ChemPlusChem, 2015, 80, 1556-1564.	2.8	87
14	Harnessing the Wisdom in Colloidal Chemistry to Make Stable Singleâ€Atom Catalysts. Advanced Materials, 2018, 30, e1802304.	21.0	82
15	Single-step conversion of lignin monomers to phenol: Bridging the gap between lignin and high-value chemicals. Chinese Journal of Catalysis, 2018, 39, 1445-1452.	14.0	81
16	Stabilizing a Platinum ₁ Singleâ€Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity. Angewandte Chemie, 2016, 128, 8459-8463.	2.0	80
17	Catalytic transfer hydrogenolysis as an efficient route in cleavage of lignin and model compounds. Green Energy and Environment, 2018, 3, 328-334.	8.7	76
18	Formic acid-mediated liquefaction of chitin. Green Chemistry, 2016, 18, 5050-5058.	9.0	71

JIAGUANG ZHANG

#	Article	IF	CITATIONS
19	Production of Glucosamine from Chitin by Coâ€solvent Promoted Hydrolysis and Deacetylation. ChemCatChem, 2017, 9, 2790-2796.	3.7	66
20	Production of Terephthalic Acid from Corn Stover Lignin. Angewandte Chemie, 2019, 131, 4988-4991.	2.0	59
21	Efficient cleavage of aryl ether C–O linkages by Rh–Ni and Ru–Ni nanoscale catalysts operating in water. Chemical Science, 2018, 9, 5530-5535.	7.4	57
22	A Metalâ€Free, Carbonâ€Based Catalytic System for the Oxidation of Lignin Model Compounds and Lignin. ChemPlusChem, 2014, 79, 825-834.	2.8	54
23	Direct Conversion of Mono―and Polysaccharides into 5â€Hydroxymethylfurfural Using Ionicâ€Liquid Mixtures. ChemSusChem, 2016, 9, 2089-2096.	6.8	49
24	Popping of Graphite Oxide: Application in Preparing Metal Nanoparticle Catalysts. Advanced Materials, 2015, 27, 4688-4694.	21.0	48
25	Ligands Modulate Reaction Pathway in the Hydrogenation of 4â€Nitrophenol Catalyzed by Gold Nanoclusters. ChemCatChem, 2018, 10, 395-402.	3.7	47
26	Rh nanoparticles with NiO x surface decoration for selective hydrogenolysis of C O bond over arene hydrogenation. Journal of Molecular Catalysis A, 2016, 422, 188-197.	4.8	42
27	Thermally responsive gold nanocatalysts based on a modified poly-vinylpyrrolidone. Journal of Molecular Catalysis A, 2013, 371, 29-35.	4.8	30
28	Aqueous-phase hydrogenation of alkenes and arenes: The growing role of nanoscale catalysts. Catalysis Today, 2015, 247, 96-103.	4.4	29
29	Rapid nanoparticle-catalyzed hydrogenations in triphasic millireactors with facile catalyst recovery. Green Chemistry, 2014, 16, 4654-4658.	9.0	26
30	Support effects in the de-methoxylation of lignin monomer 4-propylguaiacol over molybdenum-based catalysts. Fuel Processing Technology, 2020, 199, 106224.	7.2	23
31	Photocatalytic carboxylation of C H bonds promoted by popped graphene oxide (PGO) either bare or loaded with CuO. Journal of CO2 Utilization, 2017, 20, 97-104.	6.8	22
32	NiAg Catalysts for Selective Hydrogenolysis of the Lignin C-O Bond. Particle and Particle Systems Characterization, 2016, 33, 610-619.	2.3	19
33	Transformation of sodium bicarbonate and CO2 into sodium formate over NiPd nanoparticle catalyst. Frontiers in Chemistry, 2013, 1, 17.	3.6	8
34	Formic acid–aided biomass valorization. Current Opinion in Green and Sustainable Chemistry, 2020, 24, 67-71.	5.9	5