Nicole A Young

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10710454/publications.pdf

Version: 2024-02-01

23 1,211 18
papers citations h-index

23 23 23 1628 all docs docs citations times ranked citing authors

642732

23

g-index

#	Article	IF	CITATIONS
1	Neuron densities vary across and within cortical areas in primates. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15927-15932.	7.1	333
2	Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat. Neurological Research, 2003, 25, 794-800.	1.3	153
3	Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 740-745.	7.1	67
4	Three counting methods agree on cell and neuron number in chimpanzee primary visual cortex. Frontiers in Neuroanatomy, 2014, 8, 36.	1.7	62
5	Optimal parameters for microstimulation derived forelimb movement thresholds and motor maps in rats and mice. Journal of Neuroscience Methods, 2011, 196, 60-69.	2.5	59
6	Cell and neuron densities in the primary motor cortex of primates. Frontiers in Neural Circuits, 2013, 7, 30.	2.8	58
7	Development of motor maps in rats and their modulation by experience. Journal of Neurophysiology, 2012, 108, 1309-1317.	1.8	47
8	A rapid and reliable method of counting neurons and other cells in brain tissue: a comparison of flow cytometry and manual counting methods. Frontiers in Neuroanatomy, 2010, 4, 5.	1.7	45
9	Kindling-induced emotional behavior in male and female rats Behavioral Neuroscience, 2003, 117, 632-640.	1.2	43
10	Induction of Neocortical Long-Term Depression Results in Smaller Movement Representations, Fewer Excitatory Perforated Synapses, and More Inhibitory Synapses. Cerebral Cortex, 2006, 17, 434-442.	2.9	38
11	Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans. Eye and Brain, 2014, 2014, 5.	2.5	36
12	Hippocampal Kindling Leads to Motor Map Expansion. Epilepsia, 2006, 47, 1383-1391.	5.1	34
13	Use of flow cytometry for high-throughput cell population estimates in brain tissue. Frontiers in Neuroanatomy, 2012, 6, 27.	1.7	34
14	Functional brain mapping at 9.4T using a new MRIâ€compatible electrode chronically implanted in rats. Magnetic Resonance in Medicine, 2009, 61, 222-228.	3.0	32
15	Distributions of Cells and Neurons across the Cortical Sheet in Old World Macaques. Brain, Behavior and Evolution, 2016, 88, 1-13.	1.7	32
16	Transcranial Magnetic Stimulation for Chronic Pain. Neurosurgery Clinics of North America, 2014, 25, 819-832.	1.7	26
17	Epileptic baboons have lower numbers of neurons in specific areas of cortex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19107-19112.	7.1	24
18	Environmental Enrichment Facilitates Amygdala Kindling but Reduces Kindling-Induced Fear in Male Rats Behavioral Neuroscience, 2004, 118, 1128-1133.	1.2	20

NICOLE A YOUNG

#	Article	IF	CITATION
19	Exogenous antenatal glucocorticoid treatment reduces susceptibility for hippocampal kindled and maximal electroconvulsive seizures in infant rats. Experimental Neurology, 2006, 198, 303-312.	4.1	17
20	Motor map expansion in the pilocarpine model of temporal lobe epilepsy is dependent on seizure severity and rat strain. Experimental Neurology, 2009, 217, 421-428.	4.1	17
21	Motor maps, seizures, and behaviour Canadian Journal of Experimental Psychology, 2008, 62, 132-139.	0.8	13
22	Seizures, but not lowered seizure thresholds, results in larger neocortical motor maps and concomitant disruptions in skilled motor behaviour. Behavioural Brain Research, 2010, 214, 60-65.	2.2	11
23	Cortical projections to the superior colliculus in grey squirrels (<i>Sciurus carolinensis</i>). European Journal of Neuroscience, 2019, 49, 1008-1023.	2.6	10