
Yury Gerasimenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10704585/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Electrical Spinal Cord Stimulation on the Activity of the Hypothalamicâ€Pituitaryâ€Adrenocortical System and the Sensitivity of the Gastric Mucosa to Ulcerogenic Stimuli. FASEB Journal, 2022, 36, .	0.5	0
2	Epidural Stimulation. , 2022, , 1322-1325.		0
3	Cervical Electrical Neuromodulation Effectively Enhances Hand Motor Output in Healthy Subjects by Engaging a Use-Dependent Intervention. Journal of Clinical Medicine, 2021, 10, 195.	2.4	16
4	Transcutaneous Electrical Neuromodulation of the Cervical Spinal Cord Depends Both on the Stimulation Intensity and the Degree of Voluntary Activity for Training. A Pilot Study. Journal of Clinical Medicine, 2021, 10, 3278.	2.4	14
5	Serotonergic Facilitation of Forelimb Functional Recovery in Rats with Cervical Spinal Cord Injury. Neurotherapeutics, 2021, 18, 1226-1243.	4.4	4
6	Noninvasive spinal stimulation safely enables upright posture in children with spinal cord injury. Nature Communications, 2021, 12, 5850.	12.8	24
7	Novel Non-invasive Strategy for Spinal Neuromodulation to Control Human Locomotion. Frontiers in Human Neuroscience, 2020, 14, 622533.	2.0	9
8	Epidural Spinal Cord Stimulation Improves Motor Function in Rats With Chemically Induced Parkinsonism. Neurorehabilitation and Neural Repair, 2019, 33, 1029-1039.	2.9	8
9	Tetraplegia to Overground Stepping Using Non-Invasive Spinal Neuromodulation. , 2019, , .		7
10	Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat. Journal of Neurophysiology, 2019, 122, 585-600.	1.8	13
11	Distribution of Spinal Neuronal Networks Controlling Forward and Backward Locomotion. Journal of Neuroscience, 2018, 38, 4695-4707.	3.6	31
12	Non-Invasive Activation of Cervical Spinal Networks after Severe Paralysis. Journal of Neurotrauma, 2018, 35, 2145-2158.	3.4	138
13	An Autonomic Neuroprosthesis: Noninvasive Electrical Spinal Cord Stimulation Restores Autonomic Cardiovascular Function in Individuals with Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 446-451.	3.4	70
14	Electrical Spinal Stimulation, and Imagining of Lower Limb Movements to Modulate Brain-Spinal Connectomes That Control Locomotor-Like Behavior. Frontiers in Physiology, 2018, 9, 1196.	2.8	21
15	Engaging cervical spinal circuitry with non-invasive spinal stimulation and buspirone to restore hand function in chronic motor complete patients. Scientific Reports, 2018, 8, 15546.	3.3	63
16	Feed-Forwardness of Spinal Networks in Posture and Locomotion. Neuroscientist, 2017, 23, 441-453.	3.5	33
17	Electrical neuromodulation of the cervical spinal cord facilitates forelimb skilled function recovery in spinal cord injured rats. Experimental Neurology, 2017, 291, 141-150.	4.1	63
18	Weight Bearing Over-ground Stepping in an Exoskeleton with Non-invasive Spinal Cord Neuromodulation after Motor Complete Paraplegia. Frontiers in Neuroscience, 2017, 11, 333.	2.8	131

YURY GERASIMENKO

#	Article	IF	CITATIONS
19	Engaging Cervical Spinal Cord Networks to Reenable Volitional Control of Hand Function in Tetraplegic Patients. Neurorehabilitation and Neural Repair, 2016, 30, 951-962.	2.9	123
20	Unique Spatiotemporal Neuromodulation of the Lumbosacral Circuitry Shapes Locomotor Success after Spinal Cord Injury. Journal of Neurotrauma, 2016, 33, 1709-1723.	3.4	40
21	Integration of sensory, spinal, and volitional descending inputs in regulation of human locomotion. Journal of Neurophysiology, 2016, 116, 98-105.	1.8	44
22	Multi-site spinal stimulation strategies to enhance locomotion after paralysis. Neural Regeneration Research, 2016, 11, 1926.	3.0	8
23	Reply: No dawn yet of a new age in spinal cord rehabilitation. Brain, 2015, 138, e363-e363.	7.6	6
24	Electrophysiological biomarkers of neuromodulatory strategies to recover motor function after spinal cord injury. Journal of Neurophysiology, 2015, 113, 3386-3396.	1.8	22
25	Transcutaneous electrical spinal-cord stimulation in humans. Annals of Physical and Rehabilitation Medicine, 2015, 58, 225-231.	2.3	176
26	Electrophysiological mapping of rat sensorimotor lumbosacral spinal networks after complete paralysisa~†. Progress in Brain Research, 2015, 218, 199-212.	1.4	4
27	Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats. Journal of Neuroscience Methods, 2015, 247, 50-57.	2.5	35
28	Activation of spinal locomotor circuits in the decerebrated cat by spinal epidural and/or intraspinal electrical stimulation. Brain Research, 2015, 1600, 84-92.	2.2	45
29	Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans. Journal of Neurophysiology, 2015, 113, 834-842.	1.8	120
30	Use of quadrupedal step training to re-engage spinal interneuronal networks and improve locomotor function after spinal cord injury. Brain, 2013, 136, 3362-3377.	7.6	79
31	Using in vivo spinally-evoked potentials to assess functional connectivity along the spinal axis. , 2013, ,		3
32	Sub-threshold spinal cord stimulation facilitates spontaneous motor activity in spinal rats. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 108.	4.6	60
33	Neuromodulation of motor-evoked potentials during stepping in spinal rats. Journal of Neurophysiology, 2013, 110, 1311-1322.	1.8	39
34	Epidural Stimulation. , 2013, , 1-3.		0
35	Enhanced spontaneous cage activity induced by continuous low intensity spinal cord epidural stimulation in complete spinal cord transected adult rats. FASEB Journal, 2013, 27, 1132.29.	0.5	0
36	Somatosensory control of balance during locomotion in decerebrated cat. Journal of Neurophysiology, 2012, 107, 2072-2082.	1.8	70

YURY GERASIMENKO

#	Article	IF	CITATIONS
37	Variability in step training enhances locomotor recovery after a spinal cord injury. European Journal of Neuroscience, 2012, 36, 2054-2062.	2.6	76
38	Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet, The, 2011, 377, 1938-1947.	13.7	964
39	Using Forelimb EMG to Control an Electronic Spinal Bridge to Facilitate Hindlimb Stepping After Complete Spinal Cord Lesion. , 2011, , .		0
40	Controlling Specific Locomotor Behaviors through Multidimensional Monoaminergic Modulation of Spinal Circuitries. Journal of Neuroscience, 2011, 31, 9264-9278.	3.6	132
41	Novel and Direct Access to the Human Locomotor Spinal Circuitry. Journal of Neuroscience, 2010, 30, 3700-3708.	3.6	108
42	Propriospinal Bypass of the Serotonergic System That Can Facilitate Stepping. Journal of Neuroscience, 2009, 29, 5681-5689.	3.6	45
43	Recovery of control of posture and locomotion after a spinal cord injury: solutions staring us in the face. Progress in Brain Research, 2009, 175, 393-418.	1.4	66
44	Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nature Neuroscience, 2009, 12, 1333-1342.	14.8	620
45	Epidural stimulation: Comparison of the spinal circuits that generate and control locomotion in rats, cats and humans. Experimental Neurology, 2008, 209, 417-425.	4.1	162
46	Epidural Stimulation Induced Modulation of Spinal Locomotor Networks in Adult Spinal Rats. Journal of Neuroscience, 2008, 28, 6022-6029.	3.6	147