Qingfeng Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10703596/publications.pdf

Version: 2024-02-01

361413 552781 26 1,855 20 26 citations h-index g-index papers 26 26 26 1532 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced thermal stability and oxidation resistance in La3-Te4 by compositing metallic nickel particles. Acta Materialia, 2022, 224, 117526.	7.9	6
2	Thermoelectric Performance Optimization of n-Type La3â^'xSmxTe4/Ni Composites via Sm Doping. Energies, 2022, 15, 2353.	3.1	1
3	High efficiency GeTe-based materials and modules for thermoelectric power generation. Energy and Environmental Science, 2021, 14, 995-1003.	30.8	101
4	Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figureâ€ofâ€Merit in (Mg, Bi) Coâ€Doped GeTe. Advanced Materials, 2021, 33, e2008773.	21.0	112
5	Synergistically Optimized Electrical and Thermal Transport Properties in Copper Phthalocyanine-Based Organic Small Molecule with Nanoscale Phase Separations. ACS Applied Materials & Samp; Interfaces, 2021, 13, 15064-15072.	8.0	5
6	Thermoelectric materials with crystal-amorphicity duality induced by large atomic size mismatch. Joule, 2021, 5, 1183-1195.	24.0	27
7	Crystal Structure and Thermoelectric Properties of Cu ₂ Fe _{1–<i>x</i>} Mn _{<i>x</i>} SnSe ₄ Diamond-like Chalcogenides. ACS Applied Energy Materials, 2020, 3, 2137-2146.	5.1	15
8	Stacking faults modulation for scattering optimization in GeTe-based thermoelectric materials. Nano Energy, 2020, 68, 104347.	16.0	77
9	Discovery of high-performance thermoelectric copper chalcogenide using modified diffusion-couple high-throughput synthesis and automated histogram analysis technique. Energy and Environmental Science, 2020, 13, 3041-3053.	30.8	43
10	Number mismatch between cations and anions as an indicator for low lattice thermal conductivity in chalcogenides. Npj Computational Materials, 2020, 6, .	8.7	13
11	Copper chalcogenide thermoelectric materials. Science China Materials, 2019, 62, 8-24.	6.3	111
12	Ru Alloying Induced Enhanced Thermoelectric Performance in FeSi2-Based Compounds. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32151-32158.	8.0	17
13	Are Cu ₂ Teâ€Based Compounds Excellent Thermoelectric Materials?. Advanced Materials, 2019, 31, e1903480.	21.0	72
14	Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy and Environmental Science, 2019, 12, 2983-2990.	30.8	188
15	Thermoelectric properties of non-stoichiometric Cu2+ <i>x</i> Sn1â°' <i>x</i> Ss3 compounds. Journal of Applied Physics, 2019, 126, .	2.5	35
16	Thermoelectric properties of n-type Cu ₄ Sn ₇ S ₁₆ -based compounds. RSC Advances, 2019, 9, 7826-7832.	3.6	26
17	Aguilarite Ag ₄ SSe Thermoelectric Material: Natural Mineral with Low Lattice Thermal Conductivity. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12632-12638.	8.0	30
18	Superior performance and high service stability for GeTe-based thermoelectric compounds. National Science Review, 2019, 6, 944-954.	9.5	96

#	Article	IF	CITATIONS
19	Improved Thermoelectric Performance in Nonstoichiometric Cu _{2+δ} Mn _{1â^δ} SnSe ₄ Quaternary Diamondlike Compounds. ACS Applied Materials & Interfaces, 2018, 10, 10123-10131.	8.0	24
20	Intrinsically High Thermoelectric Performance in AgInSe ₂ nâ€Type Diamond‣ike Compounds. Advanced Science, 2018, 5, 1700727.	11.2	66
21	Cu ₈ GeSe ₆ -based thermoelectric materials with an argyrodite structure. Journal of Materials Chemistry C, 2017, 5, 943-952.	5 . 5	93
22	Ultrahigh thermoelectric performance in Cu $2\hat{a}$ y Se 0.5 S 0.5 liquid-like materials. Materials Today Physics, 2017, 1, 14-23.	6.0	130
23	Enhanced Thermoelectric Performance through Tuning Bonding Energy in Cu ₂ Se _{1–<i>x</i>} S _{<i>x</i>} Liquid-like Materials. Chemistry of Materials, 2017, 29, 6367-6377.	6.7	179
24	Ultrahigh thermoelectric performance in Cu ₂ Se-based hybrid materials with highly dispersed molecular CNTs. Energy and Environmental Science, 2017, 10, 1928-1935.	30.8	298
25	Roles of Cu in the Enhanced Thermoelectric Properties in Bi0.5Sb1.5Te3. Materials, 2017, 10, 251.	2.9	51
26	Quaternary Pseudocubic Cu ₂ TMSnSe ₄ (TM = Mn, Fe, Co) Chalcopyrite Thermoelectric Materials. Advanced Electronic Materials, 2016, 2, 1600312.	5.1	39