Arpad Szallasi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1070271/publications.pdf Version: 2024-02-01

ADDAD SZALLASI

#	Article	IF	CITATIONS
1	Vanilloid (Capsaicin) receptors and mechanisms. Pharmacological Reviews, 1999, 51, 159-212.	16.0	1,412
2	The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nature Reviews Drug Discovery, 2007, 6, 357-372.	46.4	754
3	Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3655-3660.	7.1	706
4	Transient receptor potential channels as therapeutic targets. Nature Reviews Drug Discovery, 2011, 10, 601-620.	46.4	472
5	Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine. Pharmacological Reviews, 2014, 66, 676-814.	16.0	440
6	Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper. Neuroscience, 1989, 30, 515-520.	2.3	403
7	Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3655-3660.	7.1	388
8	Advances in TRP channel drug discovery: from target validation to clinical studies. Nature Reviews Drug Discovery, 2022, 21, 41-59.	46.4	206
9	TRPV1: a therapeutic target for novel analgesic drugs?. Trends in Molecular Medicine, 2006, 12, 545-554.	6.7	154
10	Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. British Journal of Pharmacology, 2018, 175, 2185-2203.	5.4	154
11	Targeting TRPV1 for pain relief: limits, losers and laurels. Expert Opinion on Investigational Drugs, 2012, 21, 1351-1369.	4.1	122
12	Resiniferatoxin binding to vanilloid receptors in guinea pig and human airways American Journal of Respiratory and Critical Care Medicine, 1995, 152, 59-63.	5.6	94
13	Therapeutic Targeting of TRPV1 by Resiniferatoxin, from Preclinical Studies to Clinical Trials. Current Topics in Medicinal Chemistry, 2011, 11, 2159-2170.	2.1	85
14	Vanilloid receptor loss in rat sensory ganglia associated with long term desensitization to resiniferatoxin. Neuroscience Letters, 1992, 140, 51-54.	2.1	66
15	Piperine: researchers discover new flavor in an ancient spice. Trends in Pharmacological Sciences, 2005, 26, 437-9.	8.7	58
16	The stimulation of capsaicinâ€sensitive neurones in a vanilloid receptorâ€mediated fashion by pungent terpenoids possessing an unsaturated 1,4â€dialdehyde moiety. British Journal of Pharmacology, 1996, 119, 283-290.	5.4	54
17	NCX-4010, a high-concentration capsaicin dermal patch for lasting relief of peripheral neuropathic pain. Current Opinion in Investigational Drugs, 2009, 10, 702-10.	2.3	51
18	Transient receptor potential ankyrin 1 (TRPA1) antagonists. Pharmaceutical Patent Analyst, 2015, 4, 75-94.	1.1	42

ARPAD SZALLASI

#	Article	IF	CITATIONS
19	TRPV1: A Potential Therapeutic Target in Type 2 Diabetes and Comorbidities?. Trends in Molecular Medicine, 2017, 23, 1002-1013.	6.7	36
20	Advances in the design and therapeutic use of capsaicin receptor TRPV1 agonists and antagonists. Expert Opinion on Therapeutic Patents, 2008, 18, 159-209.	5.0	34
21	Small molecule vanilloid TRPV1 receptor antagonists approaching drug status: can they live up to the expectations?. Naunyn-Schmiedeberg's Archives of Pharmacology, 2006, 373, 273-286.	3.0	33
22	Medicinal chemistry of the vanilloid (Capsaicin) TRPV1 receptor: current knowledge and future perspectives. Drug Development Research, 2007, 68, 477-497.	2.9	32
23	Autoradiographic visualization and pharmacological characterization of vanilloid (capsaicin) receptors in several species, including man. Acta Physiologica Scandinavica Supplementum, 1995, 629, 1-68.	1.0	30
24	The Mysteries of Capsaicin-Sensitive Afferents. Frontiers in Physiology, 2020, 11, 554195.	2.8	29
25	Transient Receptor Potential Channels and Itch: How Deep Should We Scratch?. Handbook of Experimental Pharmacology, 2015, 226, 89-133.	1.8	23
26	Thrombocytosis Portends Adverse Prognosis in Colorectal Cancer: A Meta-Analysis of 5,619 Patients in 16 Individual Studies. Anticancer Research, 2017, 37, 4717-4726.	1.1	21
27	Transient Receptor Potential (TRP) Channels in Head-and-Neck Squamous Cell Carcinomas: Diagnostic, Prognostic, and Therapeutic Potentials. International Journal of Molecular Sciences, 2020, 21, 6374.	4.1	18
28	Thrombocytosis portends adverse prognostic significance in patients with stage II colorectal carcinoma. F1000Research, 2014, 3, 180.	1.6	14
29	"Transfusion indication RBC (PBM-02)": gap analysis of a Joint Commission Patient Blood Management Performance Measure at a community hospital. Blood Transfusion, 2014, 12 Suppl 1, s187-90.	0.4	13
30	Functional Transient Receptor Potential Ankyrin 1 and Vanilloid 1 Ion Channels Are Overexpressed in Human Oral Squamous Cell Carcinoma. International Journal of Molecular Sciences, 2022, 23, 1921.	4.1	12
31	4 Clinically Useful Vanilloid Receptor TRPV1 Antagonists: Just around the Corner (or too Early to) Tj ETQq1 1 0.78	34314 rgB 10.4	T /Overlock
32	Terminal Deoxynucleotidyl Transferase (TdT)-negative Lymphoblastic Leukemia in Pediatric Patients: Incidence and Clinical Significance. Pediatric and Developmental Pathology, 2017, 20, 463-468.	1.0	11
33	Transient Receptor Potential (TRP) Channels in Drug Discovery: Old Concepts & New Thoughts. Pharmaceuticals, 2017, 10, 64.	3.8	11
34	TRPV1 Antagonists as Novel Anti-Diabetic Agents: Regulation of Oral Glucose Tolerance and Insulin Secretion Through Reduction of Low-Grade Inflammation?. Medical Sciences (Basel, Switzerland), 2019, 7, 82.	2.9	11
35	Capsaicinâ€; Resiniferatoxinâ€; and Lactic Acidâ€Evoked Vascular Effects in the Pig Nasal Mucosa <i>in vivo</i> with Reference to Characterization of the Vanilloid Receptor. Basic and Clinical Pharmacology and Toxicology, 1996, 78, 327-335.	0.0	10
36	Desensitization of Capsaicin-Sensitive Afferents Accelerates Early Tumor Growth via Increased Vascular Leakage in a Murine Model of Triple Negative Breast Cancer. Frontiers in Oncology, 2021, 11, 685297.	2.8	10

ARPAD SZALLASI

#	Article	IF	CITATIONS
37	Vanilloid-sensitive neurons: a fundamental subdivision of the peripheral nervous system. Journal of the Peripheral Nervous System, 1996, 1, 6-18.	3.1	9
38	Some like it hot (ever more so in the tropics): A puzzle with no solution. Temperature, 2016, 3, 54-55.	3.0	7
39	Feeling hot, feeling cold: TRP channels—a great story unfolds. Temperature, 2015, 2, 150-151.	3.0	6
40	Capsaicin and cancer: Guilty as charged or innocent until proven guilty?. Temperature, 2023, 10, 35-49.	3.0	5
41	Improving Blood Transfusion Practices in a Community Hospital Setting: Our Experience with Real-Time Clinical Decision Support. Medical Sciences (Basel, Switzerland), 2018, 6, 67.	2.9	3
42	Human Correlates of Animal Models of Chronic Pain. Methods in Molecular Biology, 2010, 617, 155-157.	0.9	1
43	Manipulating transient receptor potential vanilloid 1 antagonists: How to cool down a hot molecule?. Acta Physiologica, 2018, 223, e13088.	3.8	1
44	Vanilloid (TRPV1) and Other Transient Receptor Potential Channels. , 0, , 175-213.		1
45	Prevention of surgical delays by pre-admission type and screen in patients with scheduled surgical procedures: improved efficiency. Blood Transfusion, 2015, 13, 310-2.	0.4	1
46	Role of TRP Channels in Pain: An Overview. , 0, , 68-100.		0
47	Case Report: Primary Leiomyosarcoma of the breast with unusual metastasis to the femur. F1000Research, 2014, 3, 211.	1.6	0
48	Reversal of warfarin-coagulopathy: How to improve plasma transfusion practice in a community hospital setting?. Asian Journal of Transfusion Science, 2019, 13, 100.	0.3	0