
Chang-Ki Moon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10700345/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic Lightâ€Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter. Advanced Functional Materials, 2013, 23, 3896-3900.	14.9	495
2	A Fluorescent Organic Lightâ€Emitting Diode with 30% External Quantum Efficiency. Advanced Materials, 2014, 26, 5684-5688.	21.0	397
3	Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nature Communications, 2014, 5, 4769.	12.8	337
4	Highly Efficient Organic Lightâ€Emitting Diodes with Phosphorescent Emitters Having High Quantum Yield and Horizontal Orientation of Transition Dipole Moments. Advanced Materials, 2014, 26, 3844-3847.	21.0	316
5	Blue Phosphorescent Organic Lightâ€Emitting Diodes Using an Exciplex Forming Coâ€host with the External Quantum Efficiency of Theoretical Limit. Advanced Materials, 2014, 26, 4730-4734.	21.0	241
6	Skyâ€Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer. Advanced Materials, 2016, 28, 4920-4925.	21.0	238
7	Crystal Organic Lightâ€Emitting Diodes with Perfectly Oriented Nonâ€Doped Ptâ€Based Emitting Layer. Advanced Materials, 2016, 28, 2526-2532.	21.0	206
8	Thermally Activated Delayed Fluorescence from Azasiline Based Intramolecular Charge-Transfer Emitter (DTPDDA) and a Highly Efficient Blue Light Emitting Diode. Chemistry of Materials, 2015, 27, 6675-6681.	6.7	198
9	Highly Enhanced Light Extraction from Surface Plasmonic Loss Minimized Organic Lightâ€Emitting Diodes. Advanced Materials, 2013, 25, 3571-3577.	21.0	166
10	Combined Inter―and Intramolecular Chargeâ€Transfer Processes for Highly Efficient Fluorescent Organic Lightâ€Emitting Diodes with Reduced Triplet Exciton Quenching. Advanced Materials, 2017, 29, 1606448.	21.0	131
11	Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters. Nature Communications, 2018, 9, 3207.	12.8	96
12	Highly Efficient Sky-Blue Fluorescent Organic Light Emitting Diode Based on Mixed Cohost System for Thermally Activated Delayed Fluorescence Emitter (2CzPN). ACS Applied Materials & Interfaces, 2016, 8, 9806-9810.	8.0	88
13	Influence of Host Molecules on Emitting Dipole Orientation of Phosphorescent Iridium Complexes. Chemistry of Materials, 2015, 27, 2767-2769.	6.7	77
14	Triplet Harvesting by a Conventional Fluorescent Emitter Using Reverse Intersystem Crossing of Host Triplet Exciplex. Advanced Optical Materials, 2015, 3, 895-899.	7.3	73
15	External Quantum Efficiency Exceeding 24% with CIE <i>_y</i> Value of 0.08 using a Novel Carbeneâ€Based Iridium Complex in Deepâ€Blue Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e2002120.	21.0	72
16	Harnessing Triplet Excited States by Fluorescent Dopant Utilizing Codoped Phosphorescent Dopant in Exciplex Host for Efficient Fluorescent Organic Light Emitting Diodes. Advanced Optical Materials, 2017, 5, 1600749.	7.3	59
17	Unraveling the orientation of phosphors doped in organic semiconducting layers. Nature Communications, 2017, 8, 791.	12.8	53
18	Controlling Emitting Dipole Orientation with Methyl Substituents on Main Ligand of Iridium Complexes for Highly Efficient Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2015, 3, 1191-1196.	7.3	52

Chang-Ki Moon

#	Article	IF	CITATIONS
19	Luminescence from oriented emitting dipoles in a birefringent medium. Optics Express, 2015, 23, A279.	3.4	51
20	Highly efficient non-doped deep blue fluorescent emitters with horizontal emitting dipoles using interconnecting units between chromophores. Chemical Communications, 2016, 52, 10956-10959.	4.1	48
21	Formation of perfect ohmic contact at indium tin oxide/N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine interface using ReO3. Scientific Reports, 2014, 4, 3902.	3.3	47
22	Crystal Facet Engineering of TiO2 Nanostructures for Enhancing Photoelectrochemical Water Splitting with BiVO4 Nanodots. Nano-Micro Letters, 2022, 14, 48.	27.0	44
23	Relationship between molecular structure and dipole orientation of thermally activated delayed fluorescent emitters. Organic Electronics, 2017, 42, 337-342.	2.6	39
24	Electronic Structure and Emission Process of Excited Charge Transfer States in Solids. Chemistry of Materials, 2018, 30, 5648-5654.	6.7	39
25	Highly enhanced light extraction from organic light emitting diodes with little image blurring and good color stability. Organic Electronics, 2015, 17, 115-120.	2.6	36
26	Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes. Scientific Reports, 2015, 5, 8685.	3.3	33
27	Finely Tuned Blue Iridium Complexes with Varying Horizontal Emission Dipole Ratios and Quantum Yields for Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2015, 3, 211-220.	7.3	33
28	Quantitative Analysis of the Efficiency of OLEDs. ACS Applied Materials & Interfaces, 2016, 8, 33010-33018.	8.0	30
29	Dependence of Pt(II) based phosphorescent emitter orientation on host molecule orientation in doped organic thin films. Organic Electronics, 2017, 45, 279-284.	2.6	28
30	N-Type Molecular Doping in Organic Semiconductors: Formation and Dissociation Efficiencies of a Charge Transfer Complex. Journal of Physical Chemistry C, 2016, 120, 9475-9481.	3.1	27
31	Efficient Vacuum-Deposited Ternary Organic Solar Cells with Broad Absorption, Energy Transfer, and Enhanced Hole Mobility. ACS Applied Materials & Interfaces, 2016, 8, 1214-1219.	8.0	26
32	A high performance semitransparent organic photodetector with green color selectivity. Applied Physics Letters, 2014, 105, .	3.3	25
33	Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle. Applied Physics Letters, 2014, 104, 073301.	3.3	21
34	A Broadband Multiplex Living Solar Cell. Nano Letters, 2020, 20, 4286-4291.	9.1	17
35	Synthesis and characterization of highly efficient blue Ir(III) complexes by tailoring β-diketonate ancillary ligand for highly efficient PhOLED applications. Organic Electronics, 2016, 39, 91-99.	2.6	13
36	Random organic nano-textured microstructures formed by photoexcitation for light extraction of blue OLEDs. Organic Electronics, 2020, 87, 105892.	2.6	13

CHANG-KI MOON

#	Article	IF	CITATIONS
37	Pinpointing the origin of the increased driving voltage during prolonged operation in a phosphorescent OLED based on an exciplex host. Organic Electronics, 2022, 108, 106570.	2.6	11
38	Efficient Vacuumâ€Deposited Tandem Organic Solar Cells with Fill Factors Higher Than Singleâ€Junction Subcells. Advanced Energy Materials, 2015, 5, 1500228.	19.5	10
39	Highly efficient inverted top emitting organic light emitting diodes using a horizontally oriented green phosphorescent emitter. Organic Electronics, 2014, 15, 2715-2718.	2.6	9
40	Highly efficient bluish green phosphorescent organic light-emitting diodes based on heteroleptic iridium(III) complexes with phenylpyridine main skeleton. Organic Electronics, 2014, 15, 1687-1694.	2.6	9
41	Phosphorescent OLEDs: Sky-Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer (Adv. Mater. 24/2016). Advanced Materials, 2016, 28, 4758-4758.	21.0	6
42	Impacts of Minority Charge Carrier Injection on the Negative Capacitance, Steadyâ€State Current, and Transient Current of a Singleâ€Layer Organic Semiconductor Device. Advanced Electronic Materials, 2020, 6, 2000622.	5.1	5
43	Molecular Orientation and Emission Characteristics of Ir Complexes and Exciplex in Organic Thin Films. Springer Theses, 2019, , .	0.1	4
44	Blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting material. Proceedings of SPIE, 2016, , .	0.8	2
45	Triplet Harvesting: Triplet Harvesting by a Conventional Fluorescent Emitter Using Reverse Intersystem Crossing of Host Triplet Exciplex (Advanced Optical Materials 7/2015). Advanced Optical Materials, 2015, 3, 846-846.	7.3	1
46	Unraveling the origin of the orientation of Ir complexes doped in organic semiconducting layers. , 2017, , .		1
47	A Fluorescent Organic Light Emitting Diode with 100% Internal Quantum Efficiency. , 2014, , .		1
48	PhOLEDs: Finely Tuned Blue Iridium Complexes with Varying Horizontal Emission Dipole Ratios and Quantum Yields for Phosphorescent Organic Light-Emitting Diodes (Advanced Optical Materials) Tj ETQq0 0 0 rg	BT7/Øverlc	ocko10 Tf 50 2
49	Analysis of the Electronic Structure and Emission Process of Exciplex in Solids. Springer Theses, 2019, , 59-71.	0.1	0

50	The Orientation of Ir Complexes Doped in Organic Amorphous Layers. Springer Theses, 2019, , 33-58.	0.1	0	
51	Modeling of the Dipole Radiation in an Anisotropic Microcavity. Springer Theses. 2019. , 17-32.	0.1	0	

4