Xiaomei Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10696152/publications.pdf

Version: 2024-02-01

218677 377865 3,348 34 26 34 h-index citations g-index papers 34 34 34 4497 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Donor–acceptor single cocrystal of coronene and perylene diimide: molecular self-assembly and charge-transfer photoluminescence. RSC Advances, 2017, 7, 2382-2387.	3.6	34
2	Thermoactivated Electrical Conductivity in Perylene Diimide Nanofiber Materials. Journal of Physical Chemistry Letters, 2017, 8, 292-298.	4.6	16
3	Discrimination of alkyl and aromatic amine vapors using TTF–TCNQ based chemiresistive sensors. Chemical Communications, 2017, 53, 1132-1135.	4.1	23
4	A Ratiometric Fluorescent Sensor for Cd2+ Based on Internal Charge Transfer. Sensors, 2017, 17, 2517.	3.8	33
5	Chemical Self-Doping of Organic Nanoribbons for High Conductivity and Potential Application as Chemiresistive Sensor. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12360-12368.	8.0	41
6	Persistent Photoconductivity in Perylene Diimide Nanofiber Materials. ACS Energy Letters, 2016, 1, 906-912.	17.4	29
7	Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor. Scientific Reports, 2016, 6, 25015.	3.3	41
8	Interfacial Donor–Acceptor Nanofibril Composites for Selective Alkane Vapor Detection. ACS Sensors, 2016, 1, 552-559.	7.8	27
9	\hat{l}^3 radiation induced self-assembly of fluorescent molecules into nanofibers: a stimuli-responsive sensing. Journal of Materials Chemistry C, 2015, 3, 4345-4351.	5 . 5	21
10	Photodoping and Enhanced Visible Light Absorption in Singleâ€Walled Carbon Nanotubes Functionalized with a Wide Band Gap Oligomer. Advanced Materials, 2015, 27, 162-167.	21.0	20
11	Anomalous high photovoltages observed in shish kebab-like organic p–n junction nanostructures. Polymer Chemistry, 2014, 5, 309-313.	3.9	16
12	Fluorescence Ratiometric Sensor for Trace Vapor Detection of Hydrogen Peroxide. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8708-8714.	8.0	67
13	Morphology Control of Nanofibril Donor–Acceptor Heterojunction To Achieve High Photoconductivity: Exploration of New Molecular Design Rule. Journal of the American Chemical Society, 2013, 135, 16490-16496.	13.7	27
14	A selective fluorescence turn-on sensor for trace vapor detection of hydrogen peroxide. Chemical Communications, 2013, 49, 11779.	4.1	63
15	One-Step Surface Doping of Organic Nanofibers to Achieve High Dark Conductivity and Chemiresistor Sensing of Amines. ACS Applied Materials & Sensing Organic Materials & Sensing Or	8.0	28
16	Diffusion-Controlled Detection of Trinitrotoluene: Interior Nanoporous Structure and Low Highest Occupied Molecular Orbital Level of Building Blocks Enhance Selectivity and Sensitivity. Journal of the American Chemical Society, 2012, 134, 4978-4982.	13.7	137
17	Ambipolar Transport in an Electrochemically Gated Single-Molecule Field-Effect Transistor. ACS Nano, 2012, 6, 7044-7052.	14.6	67
18	Ultrafine nanofibers fabricated from an arylene–ethynylene macrocyclic molecule using surface assisted self-assembly. Chemical Communications, 2012, 48, 8904.	4.1	18

#	Article	IF	CITATION
19	Interfacial Engineering of Organic Nanofibril Heterojunctions into Highly Photoconductive Materials. Journal of the American Chemical Society, 2011, 133, 1087-1091.	13.7	79
20	Fluorescent nanoscale zinc(<scp>ii</scp>)-carboxylate coordination polymers for explosive sensing. Chemical Communications, 2011, 47, 2336-2338.	4.1	163
21	Tailoring Electronic Properties of Graphene by π–π Stacking with Aromatic Molecules. Journal of Physical Chemistry Letters, 2011, 2, 2897-2905.	4.6	255
22	Ultrathin n-Type Organic Nanoribbons with High Photoconductivity and Application in Optoelectronic Vapor Sensing of Explosives. Journal of the American Chemical Society, 2010, 132, 5743-5750.	13.7	230
23	Gate-controlled electron transport in coronenes as a bottom-up approach towards graphene transistors. Nature Communications, 2010, 1, 31.	12.8	104
24	Organic nanofibrils based on linear carbazole trimer for explosive sensing. Chemical Communications, 2010, 46, 5560.	4.1	91
25	Ambient photodoping of p-type organic nanofibers: highly efficient photoswitching and electrical vapor sensing of amines. Chemical Communications, 2010, 46, 4127.	4.1	60
26	Highly Polarized and Self-Waveguided Emission from Single-Crystalline Organic Nanobelts. Chemistry of Materials, 2009, 21, 2930-2934.	6.7	99
27	Highly responsive fluorescent sensing of explosives taggant with an organic nanofibril film. Sensors and Actuators B: Chemical, 2008, 134, 287-291.	7.8	50
28	Expedient Vapor Probing of Organic Amines Using Fluorescent Nanofibers Fabricated from an n-Type Organic Semiconductor. Nano Letters, 2008, 8, 2219-2223.	9.1	267
29	Detection of Explosives with a Fluorescent Nanofibril Film. Journal of the American Chemical Society, 2007, 129, 6978-6979.	13.7	377
30	Enhancing One-Dimensional Charge Transport through Intermolecular π-Electron Delocalization: Conductivity Improvement for Organic Nanobelts. Journal of the American Chemical Society, 2007, 129, 6354-6355.	13.7	228
31	Controlling charge transport in single molecules using electrochemical gate. Faraday Discussions, 2006, 131, 111-120.	3.2	97
32	Nanofibril Self-Assembly of an Arylene Ethynylene Macrocycle. Journal of the American Chemical Society, 2006, 128, 6576-6577.	13.7	179
33	Linearly Polarized Emission of an Organic Semiconductor Nanobelt. Journal of Physical Chemistry B, 2006, 110, 12327-12332.	2.6	84
34	Large Gate Modulation in the Current of a Room Temperature Single Molecule Transistor. Journal of the American Chemical Society, 2005, 127, 2386-2387.	13.7	277