
Abdelmonaim Azzouz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/106921/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. TrAC - Trends in Analytical Chemistry, 2018, 108, 347-369.	11.4	240
2	Simultaneous determination of parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in human urine, blood and breast milk by continuous solid-phase extraction and gas chromatography–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2016, 119, 16-26.	2.8	178
3	Combined microwave-assisted extraction and continuous solid-phase extraction prior to gas chromatography–mass spectrometry determination of pharmaceuticals, personal care products and hormones in soils, sediments and sludge. Science of the Total Environment, 2012, 419, 208-215.	8.0	116
4	Simultaneous Determination of 20 Pharmacologically Active Substances in Cow's Milk, Goat's Milk, and Human Breast Milk by Gas Chromatography–Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2011, 59, 5125-5132.	5.2	83
5	Influence of seasonal climate differences on the pharmaceutical, hormone and personal care product removal efficiency of a drinking water treatment plant. Chemosphere, 2013, 93, 2046-2054.	8.2	73
6	Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. TrAC - Trends in Analytical Chemistry, 2019, 110, 15-34.	11.4	73
7	Advances in surface plasmon resonance–based biosensor technologies for cancer biomarker detection. Biosensors and Bioelectronics, 2022, 197, 113767.	10.1	72
8	Trace analysis of endocrine disrupting compounds in environmental water samples by use of solid-phase extraction and gas chromatography with mass spectrometry detection. Journal of Chromatography A, 2014, 1360, 248-257.	3.7	65
9	Continuous solid-phase extraction and gas chromatography–mass spectrometry determination of pharmaceuticals and hormones in water samples. Journal of Chromatography A, 2010, 1217, 2956-2963.	3.7	62
10	Determination of residual pharmaceuticals in edible animal tissues by continuous solid-phase extraction and gas chromatography–mass spectrometry. Talanta, 2011, 84, 820-828.	5.5	57
11	Advances in colorimetric and optical sensing for gaseous volatile organic compounds. TrAC - Trends in Analytical Chemistry, 2019, 118, 502-516.	11.4	57
12	Multiresidue method for the determination of pharmacologically active substances in egg and honey using a continuous solid-phase extraction system and gas chromatography–mass spectrometry. Food Chemistry, 2015, 178, 63-69.	8.2	48
13	Advances in functional nanomaterial-based electrochemical techniques for screening of endocrine disrupting chemicals in various sample matrices. TrAC - Trends in Analytical Chemistry, 2019, 113, 256-279.	11.4	41
14	Occurrence and distribution of endocrine disrupting chemicals and pharmaceuticals in the river Bouregreg (Rabat, Morocco). Chemosphere, 2022, 287, 132202.	8.2	38
15	Recent progress in nanomaterial-based sensing of airborne viral and bacterial pathogens. Environment International, 2021, 146, 106183.	10.0	37
16	Determination of free and conjugated forms of endocrine-disrupting chemicals in human biological fluids by GCâ^'MS. Bioanalysis, 2016, 8, 1145-1158.	1.5	30
17	Determination of 13 endocrine disrupting chemicals in environmental solid samples using microwave-assisted solvent extraction and continuous solid-phase extraction followed by gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 231-241.	3.7	29
18	A multi-residue method for GC-MS determination of selected endocrine disrupting chemicals in fish and seafood from European and North African markets. Environmental Research, 2019, 178, 108727	7.5	29

#	Article	IF	CITATIONS
19	Recent Advances in Monitoring, Sampling, and Sensing Techniques for Bioaerosols in the Atmosphere. ACS Sensors, 2020, 5, 1254-1267.	7.8	29
20	Trace level determination of polycyclic aromatic hydrocarbons in raw and processed meat and fish products from European markets by GC-MS. Food Control, 2019, 101, 198-208.	5.5	28
21	Determination of alkylphenols, phenylphenols, bisphenolÂA, parabens, organophosphorus pesticides and triclosan in different cereal-based foodstuffs by gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2020, 412, 2621-2631.	3.7	28
22	Multiresidue determination of polycyclic aromatic hydrocarbons in edible oils by liquid-liquid extraction–solid-phase extraction–gas chromatography–mass spectrometry. Food Control, 2018, 94, 268-275.	5.5	25
23	Use of semiâ€automated continuous solidâ€phase extraction and gas chromatography–mass spectrometry for the determination of polycyclic aromatic hydrocarbons in alcoholic and nonâ€alcoholic drinks from AndalucÃa (Spain). Journal of the Science of Food and Agriculture, 2019, 99, 1117-1125.	3.5	25
24	Nanomaterial-based aptasensors as an efficient substitute for cardiovascular disease diagnosis: Future of smart biosensors. Biosensors and Bioelectronics, 2021, 193, 113617.	10.1	25
25	A multi-residue method for determining twenty-four endocrine disrupting chemicals in vegetables and fruits using ultrasound-assisted solid–liquid extraction and continuous solid-phase extraction. Chemosphere, 2021, 263, 128158.	8.2	21
26	Gas chromatography–mass spectrometry determination of pharmacologically active substances in urine and blood samples by use of a continuous solid-phase extraction system and microwave-assisted derivatization. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 891-892, 12-19.	2.3	18
27	Assessing polycyclic aromatic hydrocarbons in cereal-based foodstuffs by using a continuous solid-phase extraction system and gas chromatography–mass spectrometry. Food Control, 2018, 92, 92-100.	5.5	15
28	lsolation and determination of ivermectin in post-mortem and in vivo tissues of dung beetles using a continuous solid phase extraction method followed by LC-ESI+-MS/MS. PLoS ONE, 2017, 12, e0172202.	2.5	14
29	Validation and Use of an Accurate, Sensitive Method for Sample Preparation and Gas Chromatography–Mass Spectrometry Determination of Different Endocrine-Disrupting Chemicals in Dairy Products. Foods, 2021, 10, 1040.	4.3	6
30	Determination of polycyclic aromatic hydrocarbons in environmental waters from southern Spain by using a continuous solid-phase extraction system and gas chromatography-mass spectrometry. Environmental Chemistry, 2018, 15, 351.	1.5	1