

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10689541/publications.pdf Version: 2024-02-01

Yu He

#	Article	IF	CITATIONS
1	Quantifying the triboelectric series. Nature Communications, 2019, 10, 1427.	12.8	1,107
2	On the Electronâ€Transfer Mechanism in the Contactâ€Electrification Effect. Advanced Materials, 2018, 30, e1706790.	21.0	483
3	A Highly Stretchable Fiberâ€Based Triboelectric Nanogenerator for Selfâ€Powered Wearable Electronics. Advanced Functional Materials, 2017, 27, 1604378.	14.9	296
4	Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nature Communications, 2020, 11, 2093.	12.8	287
5	Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nature Communications, 2020, 11, 4683.	12.8	245
6	Flexible Quasiâ€Solid State Ionogels with Remarkable Seebeck Coefficient and High Thermoelectric Properties. Advanced Energy Materials, 2019, 9, 1901085.	19.5	199
7	Selfâ€Powered Wireless Sensor Node Enabled by a Duckâ€5haped Triboelectric Nanogenerator for Harvesting Water Wave Energy. Advanced Energy Materials, 2017, 7, 1601705.	19.5	198
8	Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect. Nano Energy, 2018, 48, 421-429.	16.0	195
9	Uniaxially Aligned Electrospun All-Cellulose Nanocomposite Nanofibers Reinforced with Cellulose Nanocrystals: Scaffold for Tissue Engineering. Biomacromolecules, 2014, 15, 618-627.	5.4	187
10	Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator. ACS Nano, 2016, 10, 11369-11376.	14.6	181
11	A Hierarchically Nanostructured Cellulose Fiberâ€Based Triboelectric Nanogenerator for Selfâ€Powered Healthcare Products. Advanced Functional Materials, 2018, 28, 1805540.	14.9	180
12	Auxetic Foamâ€Based Contactâ€Mode Triboelectric Nanogenerator with Highly Sensitive Selfâ€Powered Strain Sensing Capabilities to Monitor Human Body Movement. Advanced Functional Materials, 2017, 27, 1606695.	14.9	156
13	Light-Triggered Pyroelectric Nanogenerator Based on a pn-Junction for Self-Powered Near-Infrared Photosensing. ACS Nano, 2017, 11, 8339-8345.	14.6	147
14	Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. International Journal of Biological Macromolecules, 2017, 97, 568-573.	7.5	132
15	An aeroelastic flutter based triboelectric nanogenerator as a self-powered active wind speed sensor in harsh environment. Extreme Mechanics Letters, 2017, 15, 122-129.	4.1	123
16	A Selfâ€Powered Dynamic Displacement Monitoring System Based on Triboelectric Accelerometer. Advanced Energy Materials, 2017, 7, 1700565.	19.5	117
17	Superhydrophilic graphene oxide@electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation. Carbohydrate Polymers, 2017, 175, 216-222.	10.2	104
18	Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties. Journal of Materials Chemistry A, 2020, 8, 10813-10821.	10.3	87

Xu He

#	Article	IF	CITATIONS
19	Aerogels from quaternary ammonium-functionalized cellulose nanofibers for rapid removal of Cr(VI) from water. Carbohydrate Polymers, 2014, 111, 683-687.	10.2	86
20	Concurrent Harvesting of Ambient Energy by Hybrid Nanogenerators for Wearable Self-Powered Systems and Active Remote Sensing. ACS Applied Materials & Interfaces, 2018, 10, 14708-14715.	8.0	78
21	Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils. Carbohydrate Polymers, 2014, 104, 143-150.	10.2	74
22	Fabrication and Characterization of Highly Porous Fe(OH) ₃ @Cellulose Hybrid Fibers for Effective Removal of Congo Red from Contaminated Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 7723-7732.	6.7	69
23	High performance poly (vinyl alcohol)/cellulose nanocrystals nanocomposites manufactured by injection molding. Cellulose, 2014, 21, 485-494.	4.9	67
24	Tissue engineering scaffolds electrospun from cotton cellulose. Carbohydrate Polymers, 2015, 115, 485-493.	10.2	50
25	Acrylic acid grafted and acrylic acid/sodium humate grafted bamboo cellulose nanofibers for Cu ²⁺ adsorption. RSC Advances, 2014, 4, 55195-55201.	3.6	49
26	Mechanically robust, flame-retardant and anti-bacterial nanocomposite films comprised of cellulose nanofibrils and magnesium hydroxide nanoplatelets in a regenerated cellulose matrix. Cellulose, 2014, 21, 1859-1872.	4.9	49
27	One-Step Fabrication of Fe(OH) ₃ @Cellulose Hollow Nanofibers with Superior Capability for Water Purification ACS Applied Materials & amp: Interfaces 2017 9 25339-25349	8.0	38

·P I