
Farida Cheriet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10681639/publications.pdf Version: 2024-02-01

FADIDA CHEDIET

#	Article	IF	CITATIONS
1	Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening. IEEE Transactions on Medical Imaging, 2016, 35, 1116-1126.	8.9	225
2	Human Atlas of the Cardiac Fiber Architecture: Study on a Healthy Population. IEEE Transactions on Medical Imaging, 2012, 31, 1436-1447.	8.9	201
3	Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography. Biomedical Optics Express, 2017, 8, 1203.	2.9	103
4	Clinical methods for quantifying body segment posture: a literature review. Disability and Rehabilitation, 2011, 33, 367-383.	1.8	96
5	Spectral Log-Demons: Diffeomorphic Image Registration with Very Large Deformations. International Journal of Computer Vision, 2014, 107, 254-271.	15.6	87
6	Reliability of trunk shape measurements based on 3-D surface reconstructions. European Spine Journal, 2007, 16, 1882-1891.	2.2	80
7	Joint segmentation and classification of retinal arteries/veins from fundus images. Artificial Intelligence in Medicine, 2019, 94, 96-109.	6.5	78
8	A versatile 3D reconstruction system of the spine and pelvis for clinical assessment of spinal deformities. Medical and Biological Engineering and Computing, 2007, 45, 591-602.	2.8	71
9	Geometric Variability of the Scoliotic Spine Using Statistics on Articulated Shape Models. IEEE Transactions on Medical Imaging, 2008, 27, 557-568.	8.9	71
10	A three-dimensional retrospective analysis of the evolution of spinal instrumentation for the correction of adolescent idiopathic scoliosis. European Spine Journal, 2009, 18, 23-37.	2.2	65
11	FOCUSR: Feature Oriented Correspondence Using Spectral Regularization–A Method for Precise Surface Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35, 2143-2160.	13.9	64
12	A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images. Computerized Medical Imaging and Graphics, 2016, 52, 28-43.	5.8	62
13	A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images. IEEE Transactions on Medical Imaging, 2019, 38, 2434-2444.	8.9	62
14	Three-Dimensional Classification of Spinal Deformities Using Fuzzy Clustering. Spine, 2006, 31, 923-930.	2.0	60
15	Reliability of a quantitative clinical posture assessment tool among persons with idiopathic scoliosis. Physiotherapy, 2012, 98, 64-75.	0.4	60
16	Validity of a Quantitative Clinical Measurement Tool of Trunk Posture in Idiopathic Scoliosis. Spine, 2010, 35, E988-E994.	2.0	59
17	Texture Analysis for Automatic Segmentation of Intervertebral Disks of Scoliotic Spines From MR Images. IEEE Transactions on Information Technology in Biomedicine, 2009, 13, 608-620.	3.2	58
18	Personalized X-Ray 3-D Reconstruction of the Scoliotic Spine From Hybrid Statistical and Image-Based Models. IEEE Transactions on Medical Imaging, 2009, 28, 1422-1435.	8.9	56

#	Article	IF	CITATIONS
19	Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images. Machine Vision and Applications, 2011, 22, 171-180.	2.7	52
20	Characterization of coronary artery pathological formations from OCT imaging using deep learning. Biomedical Optics Express, 2018, 9, 4936.	2.9	51
21	Articulated Spine Models for 3-D Reconstruction From Partial Radiographic Data. IEEE Transactions on Biomedical Engineering, 2008, 55, 2565-2574.	4.2	41
22	Prediction of anterior scoliotic spinal curve from trunk surface using support vector regression. Engineering Applications of Artificial Intelligence, 2005, 18, 973-983.	8.1	37
23	Preliminary Evaluation of a Computer-Assisted Tool for the Design and Adjustment of Braces in Idiopathic Scoliosis. Spine, 2007, 32, 835-843.	2.0	36
24	Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images. Computers in Biology and Medicine, 2016, 72, 201-211.	7.0	35
25	Three-Dimensional (3-D) Reconstruction of the Spine From a Single X-Ray Image and Prior Vertebra Models. IEEE Transactions on Biomedical Engineering, 2004, 51, 1628-1639.	4.2	30
26	Three-Dimensional Reconstruction of the Scoliotic Spine and Pelvis From Uncalibrated Biplanar x-Ray Images. Journal of Spinal Disorders and Techniques, 2007, 20, 160-167.	1.9	29
27	Three-dimensional Subclassification of Lenke Type 1 Scoliotic Curves. Journal of Spinal Disorders and Techniques, 2009, 22, 135-143.	1.9	25
28	A video stream processor for real-time detection and correction of specular reflections in endoscopic images. , 2008, , .		24
29	Robust universal nonrigid motion correction framework for firstâ€pass cardiac MR perfusion imaging. Journal of Magnetic Resonance Imaging, 2017, 46, 1060-1072.	3.4	23
30	Computer-aided diagnosis system for the Acute Respiratory Distress Syndrome from chest radiographs. Computers in Biology and Medicine, 2014, 52, 41-48.	7.0	21
31	3D registration of MR and X-ray spine images using an articulated model. Computerized Medical Imaging and Graphics, 2012, 36, 410-418.	5.8	20
32	Fast Brain Matching with Spectral Correspondence. Lecture Notes in Computer Science, 2011, 22, 660-673.	1.3	20
33	A Multitask Learning Architecture for Simultaneous Segmentation of Bright and Red Lesions in Fundus Images. Lecture Notes in Computer Science, 2018, , 101-108.	1.3	19
34	A Novel Method for the 3-D Reconstruction of Scoliotic Ribs From Frontal and Lateral Radiographs. IEEE Transactions on Biomedical Engineering, 2011, 58, 1135-1146.	4.2	17
35	An automatic diagnostic system of coronary artery lesions in Kawasaki disease using intravascular optical coherence tomography imaging. Journal of Biophotonics, 2020, 13, e201900112.	2.3	16
36	Spectral Demons – Image Registration via Global Spectral Correspondence. Lecture Notes in Computer Science, 2012, , 30-44.	1.3	15

#	Article	IF	CITATIONS
37	Self-Calibration of Biplanar Radiographic Images Through Geometric Spine Shape Descriptors. IEEE Transactions on Biomedical Engineering, 2010, 57, 1663-1675.	4.2	14
38	Multimodal image registration of the scoliotic torso for surgical planning. BMC Medical Imaging, 2013, 13, 1.	2.7	14
39	Differences in Standing and Sitting Postures of Youth with Idiopathic Scoliosis from Quantitative Analysis of Digital Photographs. Physical and Occupational Therapy in Pediatrics, 2013, 33, 313-326.	1.3	14
40	Artery/vein classification in fundus images using CNN and likelihood score propagation. , 2017, , .		14
41	Multilevel Analysis of Trunk Surface Measurements for Noninvasive Assessment of Scoliosis Deformities. Spine, 2012, 37, E1045-E1053.	2.0	13
42	Scoliosis Follow-Up Using Noninvasive Trunk Surface Acquisition. IEEE Transactions on Biomedical Engineering, 2013, 60, 2262-2270.	4.2	13
43	Principal Spine Shape Deformation Modes Using Riemannian Geometry and Articulated Models. Lecture Notes in Computer Science, 2006, , 346-355.	1.3	13
44	An Efficient FPGA-based Overlay Inference Architecture for Fully Connected DNNs. , 2018, , .		12
45	Changes in Trunk Appearance After Scoliosis Spinal Surgery and Their Relation to Changes in Spinal Measurements. Spine Deformity, 2015, 3, 595-603.	1.5	11
46	Statistical Atlas of Human Cardiac Fibers: Comparison with Abnormal Hearts. Lecture Notes in Computer Science, 2012, , 207-213.	1.3	11
47	Optimal 3D reconstruction of coronary arteries for 3D clinical assessment. Computerized Medical Imaging and Graphics, 2008, 32, 476-487.	5.8	10
48	Personalized 3D reconstruction of the rib cage for clinical assessment of trunk deformities. Medical Engineering and Physics, 2013, 35, 1651-1658.	1.7	10
49	ls Breast Asymmetry Present in Girls with Adolescent Idiopathic Scoliosis?. Spine Deformity, 2014, 2, 374-379.	1.5	10
50	Assessment of Breast Asymmetry in Adolescent Idiopathic Scoliosis Using an Automated 3D Body Surface Measurement Technique. Spine Deformity, 2017, 5, 152-158.	1.5	10
51	To distinguish flexible and rigid lumbar curve from MRI texture analysis in adolescent idiopathic scoliosis: A feasibility study. Journal of Magnetic Resonance Imaging, 2018, 48, 178-187.	3.4	10
52	Prediction of scoliosis progression with serial three-dimensional spinal curves and the artificial progression surface technique. Medical and Biological Engineering and Computing, 2010, 48, 1065-1075.	2.8	8
53	Semiautomatic Detection of Scoliotic Rib Borders From Posteroanterior Chest Radiographs. IEEE Transactions on Biomedical Engineering, 2012, 59, 909-919.	4.2	8
54	A novel fully automatic measurement of apparent breast volume from trunk surface mesh. Medical Engineering and Physics, 2017, 41, 46-54.	1.7	8

#	Article	IF	CITATIONS
55	Towards an Automatic Coronary Artery Segmentation Algorithm. , 2006, 2006, 3037-40.		6
56	Noninvasive Clinical Assessment of Trunk Deformities Associated With Scoliosis. IEEE Journal of Biomedical and Health Informatics, 2013, 17, 392-401.	6.3	6
57	Flexible architectures for retinal blood vessel segmentation in high-resolution fundus images. Journal of Real-Time Image Processing, 2018, 15, 31-42.	3.5	6
58	Particle swarm optimization method for small retinal vessels detection on multiresolution fundus images. Journal of Biomedical Optics, 2018, 23, 1.	2.6	6
59	Dynamic tracking of magnetic nanoparticles for mapping microvascular networks using a clinical 1.5 T magnetic resonance scanner. Applied Physics Letters, 2014, 104, .	3.3	5
60	Segmentation of Laparoscopic Images for Computer Assisted Surgery. Lecture Notes in Computer Science, 2003, , 587-594.	1.3	5
61	Groupwise Spectral Log-Demons Framework for Atlas Construction. Lecture Notes in Computer Science, 2013, , 11-19.	1.3	5
62	Computer-Aided Diagnosis for Chest Radiographs in Intensive Care. Journal of Pediatric Intensive Care, 2016, 05, 113-121.	0.8	4
63	A simulation study investigating potential diffusion-based MRI signatures of microstrokes. Scientific Reports, 2021, 11, 14229.	3.3	4
64	Automatic Closed Edge Detection Using Level Lines Selection. Lecture Notes in Computer Science, 2007, , 187-197.	1.3	4
65	A novel method for an automatic 3D reconstruction of coronary arteries from angiographic images. , 2012, , .		3
66	Automatic nonrigid motion correction for quantitative first-pass cardiac MR perfusion imaging. , 2015, , .		3
67	Longitudinal Scoliotic Trunk Analysis via Spectral Representation and Statistical Analysis. Lecture Notes in Computer Science, 2016, , 79-91.	1.3	3
68	Variability of the HumanÂCardiacÂLaminarÂStructure. Lecture Notes in Computer Science, 2012, , 160-167.	1.3	3
69	Statistical atlas-based descriptor for an early detection of optic disc abnormalities. Journal of Medical Imaging, 2018, 5, 1.	1.5	3
70	Bayesian Differentiation of Multi-scale Line-Structures for Model-Free Instrument Segmentation in Thoracoscopic Images. Lecture Notes in Computer Science, 2005, , 938-948.	1.3	2
71	Automatic Segmentation of Vertebrae in Ultrasound Images. Lecture Notes in Computer Science, 2015, , 344-351.	1.3	2
72	Modeling the Topology of Cerebral Microvessels Via Geometric Graph Contraction. , 2020, , .		2

#	Article	IF	CITATIONS
73	Uncertainty assessment of vessels width measurement from intensity profile model fitting in fundus images. , 0, , .		2
74	3D reconstruction of the human spine from radiograph(s) using a multi-body statistical model. Proceedings of SPIE, 2009, , .	0.8	1
75	Evidence-based clinical tool for quantitative analysis of posture in children and adolescents with idiopathic scoliosis. Scoliosis, 2013, 8, .	0.4	1
76	Memory efficient Multi-Scale Line Detector architecture for retinal blood vessel segmentation. , 2016, , .		1
77	Application of an RGBD augmented Câ€arm for minimally invasive scoliosis surgery assistance. Healthcare Technology Letters, 2017, 4, 179-183.	3.3	1
78	Intra-Slice Motion Correction of Intravascular OCT Images Using Deep Features. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 931-941.	6.3	1
79	Multimodal image fusion of anatomical structures for diagnosis, therapy planning and assistance. , 2013, , .		Ο
80	Non-invasive quantitative assessment of scoliosis spinal surgery outcome. Proceedings of SPIE, 2013, , .	0.8	0
81	Patientâ€specific anisotropic model of human trunk based on MR data. International Journal for Numerical Methods in Biomedical Engineering, 2015, 31, e02724.	2.1	0
82	A run-length encoding co-processor for retinal image texture analysis. , 2015, , .		0
83	3D reconstruction of the human trunk for designing personalized braces : Precision study. , 2020, 2020, 5806-5809.		0
84	Retinal Vessel Segmentation from a Hyperspectral Camera Images. Lecture Notes in Computer Science, 2017, , 559-566.	1.3	0
85	A Novel Automatic Method to Evaluate Scoliotic Trunk Shape Changes in Different Postures. Lecture Notes in Computer Science, 2017, , 455-462.	1.3	Ο
86	Towards an Automatic Coronary Artery Segmentation Algorithm. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0