Pengfei An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1067836/publications.pdf

Version: 2024-02-01

72 papers 8,651 citations

33 h-index 91884 69 g-index

74 all docs

74 docs citations

74 times ranked 10923 citing authors

#	Article	IF	CITATIONS
1	Dynamic Restructuring of Coordinatively Unsaturated Copper Paddle Wheel Clusters to Boost Electrochemical CO ₂ Reduction to Hydrocarbons**. Angewandte Chemie, 2022, 134, .	2.0	8
2	Dynamic Restructuring of Coordinatively Unsaturated Copper Paddle Wheel Clusters to Boost Electrochemical CO ₂ Reduction to Hydrocarbons**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	61
3	Hydroformylation of olefins catalyzed by single-atom Co(II) sites in zirconium phosphate. Journal of Catalysis, 2022, 408, 245-260.	6.2	23
4	Surface Ligand Tuning of Coordination Geometry and Pb 6s ² Electronic Pair Stereochemical Activity in MAPbBr ₃ Perovskite Nanoparticles: A Joint Experimental and Theoretical Insight. Journal of Physical Chemistry C, 2022, 126, 7500-7509.	3.1	4
5	Feâ€O Clusters Anchored on Nodes of Metal–Organic Frameworks for Direct Methane Oxidation. Angewandte Chemie - International Edition, 2021, 60, 5811-5815.	13.8	66
6	Breaking Platinum Nanoparticles to Singleâ€Atomic Ptâ€C ₄ Coâ€catalysts for Enhanced Solarâ€toâ€Hydrogen Conversion. Angewandte Chemie - International Edition, 2021, 60, 2541-2547.	13.8	51
7	Atomically defined Co on two-dimensional TiO2 nanosheet for photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 420, 127681.	12.7	40
8	Feâ€O Clusters Anchored on Nodes of Metal–Organic Frameworks for Direct Methane Oxidation. Angewandte Chemie, 2021, 133, 5875-5879.	2.0	3
9	Breaking Platinum Nanoparticles to Singleâ€Atomic Pt 4 Coâ€catalysts for Enhanced Solarâ€toâ€Hydrogen Conversion. Angewandte Chemie, 2021, 133, 2571-2577.	2.0	8
10	Fe ultra-small particles anchored on carbon aerogels to enhance the oxygen reduction reaction in Zn-air batteries. Journal of Materials Chemistry A, 2021, 9, 6861-6871.	10.3	28
11	Solvent coordination engineering for high-quality hybrid organic-inorganic perovskite films. Journal of Materials Science, 2021, 56, 9903-9913.	3.7	6
12	Singleâ€Atom Doping and Highâ€Valence State for Synergistic Enhancement of NiO Electrocatalytic Water Oxidation. Small, 2021, 17, e2102448.	10.0	28
13	Fe–Ni Alloy Nanoclusters Anchored on Carbon Aerogels as Highâ€Efficiency Oxygen Electrocatalysts in Rechargeable Zn–Air Batteries. Small, 2021, 17, e2102002.	10.0	38
14	A Cationic Ru(II) Complex Intercalated into Zirconium Phosphate Layers Catalyzes Selective Hydrogenation via Heterolytic Hydrogen Activation. ChemCatChem, 2021, 13, 3801-3814.	3.7	7
15	Hydrogen production via steam reforming of n-dodecane over NiPt alloy catalysts. Fuel, 2020, 262, 116469.	6.4	31
16	Covalently anchoring cobalt phthalocyanine on zeolitic imidazolate frameworks for efficient carbon dioxide electroreduction. CrystEngComm, 2020, 22, 1619-1624.	2.6	48
17	Dynamic evolution of isolated Ru–FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 22607-22612.	10.3	36
18	Direct Transformation of Glycerol to Propanal using Zirconium Phosphateâ€Supported Bimetallic Catalysts. ChemSusChem, 2020, 13, 4954-4966.	6.8	15

#	Article	lF	CITATIONS
19	Controlled chelation between tannic acid and Fe precursors to obtain N, S co-doped carbon with high density Fe-single atom-nanoclusters for highly efficient oxygen reduction reaction in Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 17136-17149.	10.3	64
20	Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nature Energy, 2020, 5, 881-890.	39.5	647
21	N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 276, 119137.	20.2	150
22	Atypical Oxygen-Bearing Copper Boosts Ethylene Selectivity toward Electrocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2020, 142, 11417-11427.	13.7	250
23	Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO ₂ cycloaddition. Science Advances, 2020, 6, eaaz4824.	10.3	68
24	Sulfur-Tolerant Ni–Pt/Al ₂ O ₃ Catalyst for Steam Reforming of Jet Fuel Model Compound <i>n</i> -Dodecane. Energy & Samp; Fuels, 2020, 34, 7430-7438.	5.1	13
25	Acid-stimulated bioassembly of high-performance quantum dots in <i>Escherichia coli</i> Materials Chemistry A, 2019, 7, 18480-18487.	10.3	16
26	Reordering d Orbital Energies of Singleâ€Site Catalysts for CO ₂ Electroreduction. Angewandte Chemie, 2019, 131, 12841-12846.	2.0	40
27	Reordering d Orbital Energies of Singleâ€Site Catalysts for CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2019, 58, 12711-12716.	13.8	166
28	Temperature-Dependent Structural Evolution in Au ₄₄ Ga ₅₆ Liquid Eutectic Alloy. Journal of Physical Chemistry C, 2019, 123, 25209-25219.	3.1	10
29	Enhanced CO ₂ electroreduction <i>via</i> interaction of dangling S bonds and Co sites in cobalt phthalocyanine/Znln ₂ S ₄ hybrids. Chemical Science, 2019, 10, 1659-1663.	7.4	45
30	Unraveling the Interfacial Charge Migration Pathway at the Atomic Level in a Highly Efficient Zâ€Scheme Photocatalyst. Angewandte Chemie, 2019, 131, 11451-11456.	2.0	22
31	Metal Ionic Liquids Produce Metalâ€Dispersed Carbonâ€Nitrogen Networks for Efficient CO 2 Electroreduction. ChemCatChem, 2019, 11, 3166-3170.	3.7	6
32	Unraveling the Interfacial Charge Migration Pathway at the Atomic Level in a Highly Efficient Zâ€Scheme Photocatalyst. Angewandte Chemie - International Edition, 2019, 58, 11329-11334.	13.8	152
33	Structural changes in hexagonal WO3 under high pressure. Journal of Alloys and Compounds, 2019, 797, 1013-1017.	5.5	8
34	Single atom tungsten doped ultrathin \hat{l}_{\pm} -Ni(OH)2 for enhanced electrocatalytic water oxidation. Nature Communications, 2019, 10, 2149.	12.8	363
35	Swallowâ€Nestâ€Inspired Strategy towards Ultralight Functional Multiwallâ€Carbonâ€Nanotubeâ€Based Aerogels for Supercapacitors. ChemElectroChem, 2019, 6, 1661-1667.	3.4	1
36	Unraveling the Low-Temperature Redox Behavior of Ultrathin Ceria Nanosheets with Exposed {110} Facets by in Situ XAFS/DRIFTS Utilizing CO as Molecule Probe. Journal of Physical Chemistry C, 2019, 123, 322-333.	3.1	4

#	Article	IF	CITATIONS
37	Local insight into the La-induced structural phase transition in multiferroic BiFeO ₃ ceramics by x-ray absorption fine structure spectroscopy. Journal of Physics Condensed Matter, 2019, 31, 085402.	1.8	7
38	In situ depth-resolved synchrotron radiation X-ray spectroscopy study of radiation-induced Au deposition. Journal of Synchrotron Radiation, 2019, 26, 1940-1944.	2.4	1
39	Manganese deception on graphene and implications in catalysis. Carbon, 2018, 132, 623-631.	10.3	54
40	Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Science Advances, 2018, 4, eaao6657.	10.3	460
41	Interface engineered <i>in situ</i> anchoring of Co ₉ S ₈ nanoparticles into a multiple doped carbon matrix: highly efficient zinc–air batteries. Nanoscale, 2018, 10, 2649-2657.	5.6	66
42	General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis, 2018, 1, 63-72.	34.4	1,476
43	Selective hydrogenation of unsaturated aldehydes over Pt nanoparticles promoted by the cooperation of steric and electronic effects. Chemical Communications, 2018, 54, 908-911.	4.1	55
44	The Flexibility of an Amorphous Cobalt Hydroxide Nanomaterial Promotes the Electrocatalysis of Oxygen Evolution Reaction. Small, 2018, 14, e1703514.	10.0	121
45	Extracting structural information of higher coordination shells by analyzing EXAFS derivative spectrum. Physica Scripta, 2018, 93, 125701.	2.5	0
46	Local structural changes during the disordered substitutional alloy transition in Bi2Te3 by high-pressure XAFS. Journal of Applied Physics, 2018, 124, 065901.	2.5	7
47	Colloidal Synthesis of Ultrathin Monoclinic BiVO ₄ Nanosheets for Z-Scheme Overall Water Splitting under Visible Light. ACS Catalysis, 2018, 8, 8649-8658.	11.2	151
48	Ni ^{II} Coordination to an Alâ€Based Metal–Organic Framework Made from 2â€Aminoterephthalate for Photocatalytic Overall Water Splitting. Angewandte Chemie, 2017, 129, 3082-3086.	2.0	37
49	Ni ^{II} Coordination to an Alâ€Based Metal–Organic Framework Made from 2â€Aminoterephthalate for Photocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2017, 56, 3036-3040.	13.8	175
50	Synthesis of birnessite with adjustable electron spin magnetic moments for the degradation of tetracycline under microwave induction. Chemical Engineering Journal, 2017, 326, 329-338.	12.7	28
51	Biâ€centric view of the isostructural phase transitions in αâ€Bi ₂ Se ₃ and αâ€Bi ₂ Te ₃ . Physica Status Solidi (B): Basic Research, 2017, 254, 1700007.	1.5	11
52	A method to stabilize the incident X-ray energy for anomalous diffraction measurements. Journal of Synchrotron Radiation, 2017, 24, 781-786.	2.4	1
53	Directed Biofabrication of Nanoparticles through Regulating Extracellular Electron Transfer. Journal of the American Chemical Society, 2017, 139, 12149-12152.	13.7	64
54	Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Science Advances, 2017, 3, e1603068.	10.3	224

#	Article	IF	CITATIONS
55	Revisiting local structural changes in GeO ₂ glass at high pressure. Journal of Physics Condensed Matter, 2017, 29, 465401.	1.8	8
56	Biâ€eentric view of the isostructural phase transitions in αâ€Bi ₂ Se ₃ and αâ€Bi ₂ Te ₃ (Phys. Status Solidi B 7/2017). Physica Status Solidi (B): Basic Research, 2017, 254, 1770238.	1.5	0
57	Time-resolved XAFS measurement using quick-scanning techniques at BSRF. Journal of Synchrotron Radiation, 2017, 24, 674-678.	2.4	8
58	Confocal depth-resolved fluorescence micro-X-ray absorption spectroscopy for the study of cultural heritage materials: a new mobile endstation at the Beijing Synchrotron Radiation Facility. Journal of Synchrotron Radiation, 2017, 24, 1000-1005.	2.4	11
59	Structurally Wellâ€Defined Au@Cu _{2â^'} <i>_x</i> >S Core–Shell Nanocrystals for Improved Cancer Treatment Based on Enhanced Photothermal Efficiency. Advanced Materials, 2016, 28, 3094-3101.	21.0	228
60	Toward a Unified Identification of Ti Location in the MFI Framework of High-Ti-Loaded TS-1: Combined EXAFS, XANES, and DFT Study. Journal of Physical Chemistry C, 2016, 120, 20114-20124.	3.1	45
61	Efficient Visibleâ€Lightâ€Driven Carbon Dioxide Reduction by a Singleâ€Atom Implanted Metal–Organic Framework. Angewandte Chemie - International Edition, 2016, 55, 14310-14314.	13.8	612
62	Ultrathin metalâ \in "organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy, 2016, 1, .	39.5	1,979
63	Polymer precursor synthesis of TaC–SiC ultrahigh temperature ceramic nanocomposites. RSC Advances, 2016, 6, 88770-88776.	3.6	25
64	Efficient Visibleâ€Lightâ€Driven Carbon Dioxide Reduction by a Singleâ€Atom Implanted Metal–Organic Framework. Angewandte Chemie, 2016, 128, 14522-14526.	2.0	174
65	Mechanisms on the morphology variation of hematite crystals by Al substitution: The modification of Fe and O reticular densities. Scientific Reports, 2016, 6, 35960.	3.3	43
66	Structural phase transitions in ionic conductor Bi ₂ O ₃ by temperature dependent XPD and XAS. Journal of Physics: Conference Series, 2016, 712, 012132.	0.4	5
67	Optimal azimuthal orientation for Si(111) double-crystal monochromators to achieve the least amount of glitches in the hard X-ray region. Journal of Synchrotron Radiation, 2015, 22, 1147-1150.	2.4	7
68	Anharmonicity and local lattice distortion in strained Ge-dilute Silâ^'Ge alloy. Journal of Alloys and Compounds, 2015, 653, 117-121.	5.5	2
69	A facile heating cell for <i>in situ</i> transmittance andÂfluorescence X-ray absorption spectroscopy investigations. Journal of Synchrotron Radiation, 2014, 21, 165-169.	2.4	8
70	Superconductivity Enhancement in Fe3O4 Doped YBa2Cu3O7â^Î. Journal of Superconductivity and Novel Magnetism, 2014, 27, 693-699.	1.8	5
71	Evidence of an interlayer charge transfer route in BiCu1â^'xSeO. Journal of Materials Chemistry A, 2013, 1, 12154.	10.3	27
72	A new mobile grazing-incidence X-ray absorption fine spectroscopy endstation at Beijing Synchrotron Radiation Facility. Radiation Detection Technology and Methods, 0, , .	0.8	0