Teresa Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1067392/publications.pdf

Version: 2024-02-01

42 657 16 23
papers citations h-index g-index

42 42 1058 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Interrelationship between renin-angiotensin-aldosterone system and oxidative stress in chronic heart failure patients with or without renal impairment. Biomedicine and Pharmacotherapy, 2021, 133, 110938.	5.6	15
2	Impact of physical activity on redox status and nitric oxide bioavailability in nonoverweight and overweight/obese prepubertal children. Free Radical Biology and Medicine, 2021, 163, 116-124.	2.9	6
3	Interaction between the Renin–Angiotensin System and Enteric Neurotransmission Contributes to Colonic Dysmotility in the TNBS-Induced Model of Colitis. International Journal of Molecular Sciences, 2021, 22, 4836.	4.1	14
4	Inflammation in Human Heart Failure: Major Mediators and Therapeutic Targets. Frontiers in Physiology, 2021, 12, 746494.	2.8	56
5	Adenosine A2A and A3 Receptors as Targets for the Treatment of Hypertensive-Diabetic Nephropathy. Biomedicines, 2020, 8, 529.	3.2	9
6	Endocan: A novel biomarker for risk stratification, prognosis and therapeutic monitoring in human cardiovascular and renal diseases. Clinica Chimica Acta, 2020, 509, 310-335.	1.1	21
7	Experimental and Clinical Evidence of Endothelial Dysfunction in Inflammatory Bowel Disease. Current Pharmaceutical Design, 2020, 26, 3733-3747.	1.9	2
8	Targeting dynamic facial processing mechanisms in superior temporal sulcus using a novel fMRI neurofeedback target. Neuroscience, 2019, 406, 97-108.	2.3	23
9	l-proline supplementation improves nitric oxide bioavailability and counteracts the blood pressure rise induced by angiotensin II in rats. Nitric Oxide - Biology and Chemistry, 2019, 82, 1-11.	2.7	25
10	Role of Oxidative Stress in the Pathophysiology of Arterial Hypertension and Heart Failure. , 2019, , 509-537.		3
11	Evidence for distinct levels of neural adaptation to both coherent and incoherently moving visual surfaces in visual area hMT+. NeuroImage, 2018, 179, 540-547.	4.2	7
12	Research update for articles published in <scp>EJCI</scp> in 2016. European Journal of Clinical Investigation, 2018, 48, e13016.	3.4	0
13	Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders. Journal of Neural Engineering, 2017, 14, 046026.	3.5	29
14	Longer duration of obesity is associated with a reduction in urinary angiotensinogen in prepubertal children. Pediatric Nephrology, 2017, 32, 1411-1422.	1.7	3
15	Aspirin and blood pressure: Effects when used alone or in combination with antihypertensive drugs. Revista Portuguesa De Cardiologia (English Edition), 2017, 36, 551-567.	0.2	3
16	Aspirin and blood pressure: Effects when used alone or in combination with antihypertensive drugs. Revista Portuguesa De Cardiologia, 2017, 36, 551-567.	0.5	12
17	Regulation of the Renin-Angiotensin-Aldosterone System by Reactive Oxygen Species. , 2017, , .		5
18	Control of Brain Activity in hMT+/V5 at Three Response Levels Using fMRI-Based Neurofeedback/BCI. PLoS ONE, 2016, 11, e0155961.	2.5	11

#	Article	IF	CITATIONS
19	Research update for articles published in <scp>EJCI</scp> in 2014. European Journal of Clinical Investigation, 2016, 46, 880-894.	3.4	2
20	Association of myeloperoxidase levels with cardiometabolic factors and renal function in prepubertal children. European Journal of Clinical Investigation, 2016, 46, 50-59.	3.4	16
21	Oxidative stress and nitric oxide are increased in obese children and correlate with cardiometabolic risk and renal function. British Journal of Nutrition, 2016, 116, 805-815.	2.3	37
22	Urinary fibrogenic cytokines ET-1 and TGF- \hat{l}^21 are associated with urinary angiotensinogen levels in obese children. Pediatric Nephrology, 2016, 31, 455-464.	1.7	4
23	Estatinas e stresse oxidativo na insuficiência cardÃaca crónica. Revista Portuguesa De Cardiologia, 2016, 35, 41-57.	0.5	36
24	Statins and oxidative stress in chronic heart failure. Revista Portuguesa De Cardiologia (English) Tj ETQq0 0 0 rgI	BT (Oyerlo	ck <u>10</u> Tf 50 5
25	Gender and obesity modify the impact of salt intake on blood pressure in children. Pediatric Nephrology, 2016, 31, 279-288.	1.7	28
26	Resolving Inflammation in Heart Failure: Novel Protective Lipid Mediators. Current Drug Targets, 2016, 17, 1206-1223.	2.1	13
27	Impaired resolution of inflammation in human chronic heart failure. European Journal of Clinical Investigation, 2014, 44, 527-538.	3.4	43
28	Activation of adenosine receptors improves renal antioxidant status in diabetic Wistar but not SHR rats. Upsala Journal of Medical Sciences, 2014, 119, 10-18.	0.9	16
29	Diabetes-induced increase of renal medullary hydrogen peroxide and urinary angiotensinogen is similar in normotensive and hypertensive rats. Life Sciences, 2014, 108, 71-79.	4.3	10
30	Role of H ₂ O ₂ in hypertension, reninâ€angiotensin system activation and renal medullary disfunction caused by angiotensin II. British Journal of Pharmacology, 2012, 166, 2386-2401.	5.4	37
31	Lipid Peroxidation and Antioxidants in Arterial Hypertension. , 2012, , .		6
32	Scavenging of nitric oxide by an antagonist of adenosine receptorsâ€. Journal of Pharmacy and Pharmacology, 2010, 57, 399-404.	2.4	10
33	Purinergic receptors in the splanchnic circulation. Purinergic Signalling, 2008, 4, 267-85.	2.2	9
34	Role of superoxide and hydrogen peroxide in hypertension induced by an antagonist of adenosine receptors. European Journal of Pharmacology, 2008, 588, 267-276.	3.5	42
35	Pre- and postjunctional effects of angiotensin II in hypertension due to adenosine receptor blockade. European Journal of Pharmacology, 2006, 531, 209-216.	3.5	7
36	Lesion of the caudal ventrolateral medulla prevents the induction of hypertension by adenosine receptor blockade in rats. Brain Research, 2006, 1073-1074, 374-382.	2.2	7

TERESA SOUSA

#	Article	IF	CITATION
37	Inhibition of nociceptive responses of spinal cord neurones during hypertension involves the spinal GABAergic system and a pain modulatory center located at the caudal ventrolateral medulla. Journal of Neuroscience Research, 2006, 83, 647-655.	2.9	12
38	Xanthine Oxidase Inhibition by 1,3-dipropyl-8-sulfophenyl-xanthine (DPSPX), an Antagonist of Adenosine Receptors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2004, 19, 11-15.	5.2	5
39	Hypertension Due to Blockade of Adenosine Receptors*. Basic and Clinical Pharmacology and Toxicology, 2003, 92, 160-162.	0.0	8
40	Losartan and atenolol on hypertension induced by adenosine receptor blockade. Autonomic and Autacoid Pharmacology, 2003, 23, 133-140.	0.5	6
41	Angiotensin converting enzyme inhibition prevents trophic and hypertensive effects of an antagonist of adenosine receptors. European Journal of Pharmacology, 2002, 441, 99-104.	3.5	18
42	The role of angiotensin II in hypertension due to adenosine receptors blockade. European Journal of Pharmacology, 2002, 455, 135-141.	3.5	17