Yvon Trottier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1067381/publications.pdf

Version: 2024-02-01

31 papers	5,924 citations	279798 23 h-index	31 g-index
33	33 docs citations	33	5298
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Exon 1 of the HD Gene with an Expanded CAG Repeat Is Sufficient to Cause a Progressive Neurological Phenotype in Transgenic Mice. Cell, 1996, 87, 493-506.	28.9	2,892
2	Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature, 1995, 378, 403-406.	27.8	632
3	Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nature Genetics, 1995, 10, 104-110.	21.4	431
4	Proteases Acting on Mutant Huntingtin Generate Cleaved Products that Differentially Build Up Cytoplasmic and Nuclear Inclusions. Molecular Cell, 2002, 10, 259-269.	9.7	356
5	Proteolysis of Mutant Huntingtin Produces an Exon 1 Fragment That Accumulates as an Aggregated Protein in Neuronal Nuclei in Huntington Disease. Journal of Biological Chemistry, 2010, 285, 8808-8823.	3.4	259
6	Glutamine-Expanded Ataxin-7 Alters TFTC/STAGA Recruitment and Chromatin Structure Leading to Photoreceptor Dysfunction. PLoS Biology, 2006, 4, e67.	5.6	143
7	Solution structure of polyglutamine tracts in GST-polyglutamine fusion proteins. FEBS Letters, 2002, 513, 267-272.	2.8	140
8	Stoichiometry of Base Excision Repair Proteins Correlates with Increased Somatic CAG Instability in Striatum over Cerebellum in Huntington's Disease Transgenic Mice. PLoS Genetics, 2009, 5, e1000749.	3 . 5	124
9	Domain architecture of the polyglutamine protein ataxin-3: a globular domain followed by a flexible tail. FEBS Letters, 2003, 549, 21-25.	2.8	103
10	Pathogenic and Non-pathogenic Polyglutamine Tracts Have Similar Structural Properties: Towards a Length-dependent Toxicity Gradient. Journal of Molecular Biology, 2007, 371, 235-244.	4.2	86
11	PML clastosomes prevent nuclear accumulation of mutant ataxin-7 and other polyglutamine proteins. Journal of Cell Biology, 2006, 174, 65-76.	5 . 2	82
12	Polyglutamine Expansion Induces a Protein-damaging Stress Connecting Heat Shock Protein 70 to the JNK Pathway. Journal of Biological Chemistry, 2003, 278, 16957-16967.	3.4	67
13	Polyglutamine expansion causes neurodegeneration by altering the neuronal differentiation program. Human Molecular Genetics, 2006, 15, 691-703.	2.9	67
14	Two populations of neuronal intranuclear inclusions in SCA7 differ in size and promyelocytic leukaemia protein content. Brain, 2002, 125, 1534-1543.	7.6	61
15	PML nuclear bodies and neuronal intranuclear inclusion in polyglutamine diseases. Neurobiology of Disease, 2003, 13, 230-237.	4.4	57
16	Transcriptional Activation of REST by Sp1 in Huntington's Disease Models. PLoS ONE, 2010, 5, e14311.	2.5	54
17	Differential distribution of the normal and mutated forms of huntingtin in the human brain. Annals of Neurology, 1997, 42, 712-719.	5.3	48
18	Disease Progression Despite Early Loss of Polyglutamine Protein Expression in SCA7 Mouse Model. Journal of Neuroscience, 2004, 24, 1881-1887.	3.6	42

#	Article	IF	CITATION
19	Linear and extended: a common polyglutamine conformation recognized by the three antibodies MW1, 1C2 and 3B5H10. Human Molecular Genetics, 2013, 22, 4215-4223.	2.9	37
20	A novel function of Huntingtin in the cilium and retinal ciliopathy in Huntington's disease mice. Neurobiology of Disease, 2015, 80, 15-28.	4.4	31
21	Hsp70 and Hsp40 Chaperones Do Not Modulate Retinal Phenotype in SCA7 Mice. Journal of Biological Chemistry, 2004, 279, 55969-55977.	3.4	30
22	Molecular Targets and Therapeutic Strategies in Spinocerebellar Ataxia Type 7. Neurotherapeutics, 2019, 16, 1074-1096.	4.4	29
23	Huntingtin affinity for partners is not changed by polyglutamine length: aggregation itself triggers aberrant interactions. Human Molecular Genetics, 2011, 20, 2795-2806.	2.9	28
24	SCA7 Mouse Cerebellar Pathology Reveals Preferential Downregulation of Key Purkinje Cell-Identity Genes and Shared Disease Signature with SCA1 and SCA2. Journal of Neuroscience, 2021, 41, 4910-4936.	3.6	25
25	Polyglutamine toxicity induces rod photoreceptor division, morphological transformation or death in Spinocerebellar ataxia 7 mouse retina. Neurobiology of Disease, 2010, 40, 311-324.	4.4	20
26	Gene Deregulation and Underlying Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion. Frontiers in Neuroscience, 2020, 14, 571.	2.8	18
27	Molecular Mechanisms and Therapeutic Strategies in Spinocerebellar Ataxia Type 7. Advances in Experimental Medicine and Biology, 2018, 1049, 197-218.	1.6	17
28	Preventing polyglutamine-induced activation of c-Jun delays neuronal dysfunction in a mouse model of SCA7 retinopathy. Neurobiology of Disease, 2007, 25, 571-581.	4.4	15
29	Mapping of the epitope of monoclonal antibody 2B4 to the proline-rich region of human Huntingtin, a region critical for aggregation and toxicity. Biotechnology Journal, 2007, 2, 559-564.	3 . 5	14
30	Loss of zebrafish Ataxin-7, a SAGA subunit responsible for SCA7 retinopathy, causes ocular coloboma and malformation of photoreceptors. Human Molecular Genetics, 2019, 28, 912-927.	2.9	12
31	SynAggreg: A Multifunctional High-Throughput Technology for Precision Study of Amyloid Aggregation and Systematic Discovery of Synergistic Inhibitor Compounds. Journal of Molecular Biology, 2018, 430, 5257-5279.	4.2	3