Chi Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1067333/publications.pdf Version: 2024-02-01

Сні 7ноц

#	Article	IF	CITATIONS
1	3D Printing of Graphene Aerogels. Small, 2016, 12, 1702-1708.	10.0	427
2	3D printing technologies for electrochemical energy storage. Nano Energy, 2017, 40, 418-431.	16.0	351
3	Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures. Advanced Materials, 2018, 30, e1706539.	21.0	325
4	Digital material fabrication using maskâ€imageâ€projectionâ€based stereolithography. Rapid Prototyping Journal, 2013, 19, 153-165.	3.2	204
5	3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology, 2015, 26, 434003.	2.6	177
6	3D direct writing fabrication of electrodes for electrochemical storage devices. Journal of Power Sources, 2017, 354, 134-147.	7.8	164
7	A Fast Mask Projection Stereolithography Process for Fabricating Digital Models in Minutes. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2012, 134, .	2.2	126
8	Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites. Materials and Design, 2017, 131, 186-195.	7.0	85
9	Three-Dimensional Printing Hollow Polymer Template-Mediated Graphene Lattices with Tailorable Architectures and Multifunctional Properties. ACS Nano, 2018, 12, 1096-1106.	14.6	82
10	Additive manufacturing based on optimized mask video projection for improved accuracy and resolution. Journal of Manufacturing Processes, 2012, 14, 107-118.	5.9	76
11	In-situ droplet inspection and closed-loop control system using machine learning for liquid metal jet printing. Journal of Manufacturing Systems, 2018, 47, 83-92.	13.9	76
12	3D Printing of Ultrahigh Strength Continuous Carbon Fiber Composites. Advanced Engineering Materials, 2019, 21, 1800622.	3.5	69
13	3D Printing Hierarchical Silver Nanowire Aerogel with Highly Compressive Resilience and Tensile Elongation through Tunable Poisson's Ratio. Small, 2017, 13, 1701756.	10.0	68
14	Separation force analysis and prediction based on cohesive element model for constrained-surface Stereolithography processes. CAD Computer Aided Design, 2015, 69, 134-142.	2.7	66
15	Part decomposition and assembly-based (Re) design for additive manufacturing: A review. Additive Manufacturing, 2018, 22, 230-242.	3.0	54
16	Optimized Mask Image Projection for Solid Freeform Fabrication. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2009, 131, .	2.2	51
17	Fast Stereolithography Printing of Large cale Biocompatible Hydrogel Models. Advanced Healthcare Materials, 2021, 10, e2002103.	7.6	48
18	A variable neighborhood search based genetic algorithm for flexible job shop scheduling problem. Cluster Computing, 2019, 22, 11561-11572.	5.0	47

Сні Zнои

#	Article	IF	CITATIONS
19	Highâ€Performance Flexible Schottky DC Generator via Metal/Conducting Polymer Sliding Contacts. Advanced Functional Materials, 2021, 31, 2103132.	14.9	43
20	Investigation of separation force for constrained-surface stereolithography process from mechanics perspective. Rapid Prototyping Journal, 2017, 23, 696-710.	3.2	42
21	An Open Source Framework for Integrated Additive Manufacturing and Level-Set-Based Topology Optimization. Journal of Computing and Information Science in Engineering, 2017, 17, .	2.7	33
22	In-situ Droplet Inspection and Control System for Liquid Metal Jet 3D Printing Process. Procedia Manufacturing, 2017, 10, 968-981.	1.9	31
23	Effects of printing conditions on the molecular alignment of three-dimensionally printed polymer. Composites Part B: Engineering, 2018, 134, 164-168.	12.0	28
24	Cost-Effective Additive Manufacturing of Ambient Pressure-Dried Silica Aerogel. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2021, 143, .	2.2	28
25	A 3D-printed molecular ferroelectric metamaterial. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27204-27210.	7.1	25
26	Unsupervised learning for the droplet evolution prediction and process dynamics understanding in in inkjet printing. Additive Manufacturing, 2020, 35, 101197.	3.0	25
27	Prediction and Experimental Validation of Part Thermal History in the Fused Filament Fabrication Additive Manufacturing Process. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2019, 141, .	2.2	24
28	Emerging investigator series: 3D printed graphene-biopolymer aerogels for water contaminant removal: a proof of concept. Environmental Science: Nano, 2021, 8, 399-414.	4.3	22
29	Data-driven simulation for fast prediction of pull-up process in bottom-up stereo-lithography. CAD Computer Aided Design, 2018, 99, 29-42.	2.7	20
30	Part decomposition and 2D batch placement in single-machine additive manufacturing systems. Journal of Manufacturing Systems, 2018, 48, 131-139.	13.9	20
31	Wearable Aramid–Ceramic Aerogel Composite for Harsh Environment. Advanced Engineering Materials, 2021, 23, 2001169.	3.5	20
32	LISA: Linear immersed sweeping accumulation. Journal of Manufacturing Processes, 2016, 24, 406-415.	5.9	18
33	Mass Customization: Reuse of Digital Slicing for Additive Manufacturing. Journal of Computing and Information Science in Engineering, 2017, 17, .	2.7	18
34	Production Planning for Mass Customization in Additive Manufacturing: Build Orientation Determination, 2D Packing and Scheduling. , 2018, , .		17
35	Effect of stress on the capacitance and electric permittivity of three-dimensionally printed polymer, with relevance to capacitance-based stress monitoring. Sensors and Actuators A: Physical, 2017, 263, 380-385.	4.1	16
36	Surfel convolutional neural network for support detection in additive manufacturing. International Journal of Advanced Manufacturing Technology, 2019, 105, 3593-3604.	3.0	16

Сні Zнои

#	Article	IF	CITATIONS
37	Piezoelectric behavior of three-dimensionally printed acrylate polymer without filler or poling. Journal of Materials Science, 2018, 53, 6819-6830.	3.7	15
38	First observation of the effect of the layer printing sequence on the molecular structure of three-dimensionally printed polymer, as shown by in-plane capacitance measurement. Composites Part B: Engineering, 2018, 140, 78-82.	12.0	14
39	The impact of build orientation policies on the completion time in two-dimensional irregular packing for additive manufacturing. International Journal of Production Research, 2020, 58, 6601-6615.	7.5	14
40	Recent advances in ink-based additive manufacturing for porous structures. Additive Manufacturing, 2021, 48, 102405.	3.0	14
41	Parameter Study of Three-Dimensional Printing Graphene Oxide Based on Directional Freezing. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	2.2	13
42	Phase change materials (PCM) based cold source for selective freezing 3D printing of porous materials. International Journal of Advanced Manufacturing Technology, 2018, 95, 2145-2155.	3.0	13
43	Cyber coordinated simulation for distributed multi-stage additive manufacturing systems. Journal of Manufacturing Systems, 2020, 57, 61-71.	13.9	13
44	Flexible and printable dielectric polymer composite with tunable permittivity and thermal stability. Chemical Communications, 2020, 56, 2332-2335.	4.1	12
45	High temperature ceramic thermal insulation material. Nano Research, 2022, 15, 6662-6669.	10.4	12
46	Image-Based Slicing and Tool Path Planning for Hybrid Stereolithography Additive Manufacturing. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	2.2	11
47	All-Printed Conformal High-Temperature Electronics on Flexible Ceramics. ACS Applied Electronic Materials, 2020, 2, 556-562.	4.3	11
48	Proton switching molecular magnetoelectricity. Nature Communications, 2021, 12, 4602.	12.8	10
49	A Direct Tool Path Planning Algorithm for Line Scanning Based Stereolithography. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2014, 136, .	2.2	9
50	Thermal Analysis of Directional Freezing Based Graphene Aerogel Three-Dimensional Printing Process. Journal of Micro and Nano-Manufacturing, 2017, 5, .	0.7	8
51	Unprecedented sensing of interlayer defects in three-dimensionally printed polymer by capacitance measurement. Smart Materials and Structures, 2018, 27, 115012.	3.5	8
52	Cyclic Stretching of Fibrotic Microtissue Array for Evaluation of Anti-Fibrosis Drugs. Cellular and Molecular Bioengineering, 2019, 12, 529-540.	2.1	8
53	Nearest Neighbor Gaussian Process Emulation for Multi-Dimensional Array Responses in Freeze Nano 3D Printing of Energy Devices. Journal of Computing and Information Science in Engineering, 2020, 20, . 	2.7	8
54	Mechanoâ€Morphological Characterization of Polyethyleneâ€Glycol Based Polyurethane Microgel. Macromolecular Materials and Engineering, 2016, 301, 1158-1171.	3.6	7

Сні Zнои

#	Article	IF	CITATIONS
55	Frozen "Tofu―Effect: Engineered Pores of Hydrophilic Nanoporous Materials. ACS Omega, 2017, 2, 4838-4844.	3.5	7
56	LuBan. , 2017, , .		7
57	Online droplet monitoring in inkjet 3D printing using catadioptric stereo system. IISE Transactions, 2019, 51, 153-167.	2.4	7
58	Ductile cooling phase change material. Nanoscale Advances, 2020, 2, 3900-3905.	4.6	7
59	Spatiotemporal Projectionâ€Based Additive Manufacturing: A Dataâ€Driven Image Planning Method for Subpixel Shifting in a Split Second. Advanced Intelligent Systems, 2021, 3, 2100079.	6.1	7
60	Geometric Deep Learning for Shape Correspondence in Mass Customization by Three-Dimensional Printing. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2020, 142, .	2.2	7
61	Tool Path Planning for Directional Freezing-Based Three-Dimensional Printing of Nanomaterials. Journal of Micro and Nano-Manufacturing, 2018, 6, .	0.7	6
62	Hybrid-Light-Source Stereolithography for Fabricating Macro-Objects With Micro-Textures. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2022, 144, .	2.2	6
63	Decreasing the shear stress-induced in-plane molecular alignment by unprecedented stereolithographic delay in three-dimensional printing. Journal of Materials Science, 2019, 54, 3586-3599.	3.7	5
64	Online droplet anomaly detection from streaming videos in inkjet printing. Additive Manufacturing, 2021, 38, 101835.	3.0	5
65	Enhancing the inherent piezoelectric behavior of a three-dimensionally printed acrylate polymer by electrical poling. Smart Materials and Structures, 2018, 27, 115038.	3.5	4
66	Printing Air-Stable High-Tc Molecular Magnet with Tunable Magnetic Interaction. Nano Letters, 2022, 22, 545-553.	9.1	4
67	Pbench: a benchmark suite for characterizing 3D printing prefabrication. , 2016, , .		3
68	Converse piezoelectric behavior of three-dimensionally printed polymer and comparison of the in-plane and out-of-plane behavior. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 252, 114447.	3.5	3
69	A predictive multiphase model of silica aerogels for building envelope insulations. Computational Mechanics, 2022, 69, 1457-1479.	4.0	2
70	SonicFace. , 2021, 5, 1-33.		2
71	Cyber-coordinated Simulation Models for Multi-stage Additive Manufacturing of Energy Products. , 2018, , .		1

3D Bioprinting: Fast Stereolithography Printing of Largeâ€Scale Biocompatible Hydrogel Models (Adv.) Tj ETQq0 0 0.7gBT /Overlock 10 T

#	Article	IF	CITATIONS
73	Metallic Aerogels: 3D Printing Hierarchical Silver Nanowire Aerogel with Highly Compressive Resilience and Tensile Elongation through Tunable Poisson's Ratio (Small 38/2017). Small, 2017, 13, .	10.0	0