List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1067035/publications.pdf Version: 2024-02-01

KE GUAN

#	Article	IF	CITATIONS
1	Smart Rail Mobility. Springer Series in Optical Sciences, 2022, , 123-130.	0.7	Ο
2	Performance and Optimization of Reconfigurable Intelligent Surface Aided THz Communications. IEEE Transactions on Communications, 2022, 70, 3575-3593.	7.8	36
3	Narrow-Band Radio Propagation Prediction Based on a Highly Accurate Three-Dimensional Railway Environment Model. Wireless Communications and Mobile Computing, 2022, 2022, 1-14.	1.2	2
4	Cluster-Based Characterization and Modeling for UAV Air-to-Ground Time-Varying Channels. IEEE Transactions on Vehicular Technology, 2022, 71, 6872-6883.	6.3	9
5	Channel Characterization for 5G-R Indoor Communication at 2.1 GHz. , 2022, , .		2
6	Terahertz Enabled Use Cases for Smart Mobility towards B5G and 6G Communications. , 2022, , .		0
7	Terahertz Wave Propagation Characteristics on Rough Surfaces Based on Fullâ€Wave Simulations. Radio Science, 2022, 57, .	1.6	10
8	Millimeter-Wave Radar Measurement and Ray-Tracing Simulation for Urban Street Environment. , 2022, , .		1
9	Propagation Characterization for Intra-ship Scenario towards 5G-enabled Smart Maritime. , 2022, , .		0
10	5G Channel Models for Railway Use Cases at mmWave Band and the Path Towards Terahertz. IEEE Intelligent Transportation Systems Magazine, 2021, 13, 146-155.	3.8	7
11	Channel Sounding and Ray Tracing for Intrawagon Scenario at mmWave and Sub-mmWave Bands. IEEE Transactions on Antennas and Propagation, 2021, 69, 1007-1019.	5.1	34
12	Emulation of Radio Technologies for Railways: A Tapped-Delay-Line Channel Model for Tunnels. IEEE Access, 2021, 9, 1512-1523.	4.2	11
13	Direction-of-Arrival Estimation With Virtual Antenna Array: Observability Analysis, Local Oscillator Frequency Offset Compensation, and Experimental Results. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-13.	4.7	8
14	IRACON channel measurements and models. , 2021, , 49-105.		4
15	SNR Coverage Probability Analysis of RIS-Aided Communication Systems. IEEE Transactions on Vehicular Technology, 2021, 70, 3914-3919.	6.3	31
16	Channel Characterization and Capacity Analysis for THz Communication Enabled Smart Rail Mobility. IEEE Transactions on Vehicular Technology, 2021, 70, 4065-4080.	6.3	21
17	Radio Propagation Models for TDOA Localization Performance Evaluation Exploiting Ray Tracer. , 2021, , .		0
18	Oblique Aerial Photography High-resolution Environment Models for High-speed Railway Ray-Tracing Simulations. , 2021, , .		2

#	Article	IF	CITATIONS
19	Terahertz Channel Measurement and Characterization on a Desktop from 75 to 400 GHz. , 2021, , .		3
20	Principal Multipath Component Analysis for Outdoor Microcell Scenario at 39 GHz. , 2021, , .		0
21	Outage Probability of Reconfigurable Intelligent Surface Aided THz Communications. , 2021, , .		1
22	Frequency Planning Strategies of Reducing Inter-Cell Interference for MmWave V2I Communication in Urban Scenario. , 2021, , .		0
23	CloudRT: A Chinese example of open science infrastructure and services. Cultures of Science, 2021, 4, 217-226.	0.8	8
24	Coverage Analysis of Cellular-Connected UAV Communications with 3GPP Antenna and Channel Models. , 2021, , .		1
25	Frequency-Dependent Line-of-Sight Probability Modeling in Built-Up Environments. IEEE Internet of Things Journal, 2020, 7, 699-709.	8.7	18
26	Channel Characterization and Hybrid Modeling for Millimeter-Wave Communications in Metro Train. IEEE Transactions on Vehicular Technology, 2020, 69, 12408-12417.	6.3	16
27	Design of cellular, satellite, and integrated systems for 5G and beyond. ETRI Journal, 2020, 42, 669-685.	2.0	9
28	Impact of Meteorological Attenuation on Channel Characterization at 300 GHz. Electronics (Switzerland), 2020, 9, 1115.	3.1	13
29	Electromagnetic Parameter Calibration for a Broadband Ray-Launching Simulator With SAGE Algorithm for Millimeter-Wave Communications. IEEE Access, 2020, 8, 138331-138339.	4.2	3
30	Channel Characterization for Vehicle-to-Infrastructure Communications at the Terahertz Band. , 2020, , .		3
31	Wideband Air-to-Ground Channel Characterization for Multiple Propagation Environments. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 1634-1638.	4.0	15
32	Ultra-Wideband Air-to-Ground Channel Measurements and Modeling in Hilly Environment. , 2020, , .		6
33	IEEE Access Special Section Editorial: 5G and Beyond Mobile Wireless Communications Enabling Intelligent Mobility. IEEE Access, 2020, 8, 208892-208897.	4.2	1
34	Artificial Neural Network Based Path Loss Prediction for Wireless Communication Network. IEEE Access, 2020, 8, 199523-199538.	4.2	64
35	Measurement and Simulation for Vehicle-to-Infrastructure Communications at 3.5 GHz for 5G. Wireless Communications and Mobile Computing, 2020, 2020, 1-13.	1.2	3
36	Channel Modeling and System Concepts for Future Terahertz Communications: Getting Ready for Advances Beyond 5G. IEEE Vehicular Technology Magazine, 2020, 15, 136-143.	3.4	36

KE GUAN

#	Article	IF	CITATIONS
37	Satelliteâ€Terrestrial Channel Characterization in Highâ€&peed Railway Environment at 22.6ÂGHz. Radio Science, 2020, 55, e2019RS006995.	1.6	3
38	Channel Characterization for Vehicle-to-Infrastructure Communications in Millimeter-Wave Band. IEEE Access, 2020, 8, 42325-42341.	4.2	16
39	Dependability of Directional Millimeter Wave Vehicle-to-Infrastructure Communications. IEEE Access, 2020, 8, 53162-53171.	4.2	16
40	Channel Sounding and Ray Tracing for THz Channel Characterization. , 2020, , .		8
41	Influence of Meteorological Attenuation on the Channel Characteristics for High-Speed Railway at the Millimeter-Wave Band. , 2020, , .		2
42	The Design and Applications of High-Performance Ray-Tracing Simulation Platform for 5G and Beyond Wireless Communications: A Tutorial. IEEE Communications Surveys and Tutorials, 2019, 21, 10-27.	39.4	221
43	Power-Angular Spectra Correlation Based Two Step Angle of Arrival Estimation for Future Indoor Terahertz Communications. IEEE Transactions on Antennas and Propagation, 2019, 67, 7097-7105.	5.1	15
44	Measurement-Based Modeling and Analysis of UAV Air-Ground Channels at 1 and 4ÂGHz. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 1804-1808.	4.0	40
45	Ultra-Reliable Communications for Industrial Internet of Things: Design Considerations and Channel Modeling. IEEE Network, 2019, 33, 104-111.	6.9	38
46	Lowâ€altitude UAV airâ€ground propagation channel measurement and analysis in a suburban environment at 3.9 GHz. IET Microwaves, Antennas and Propagation, 2019, 13, 1503-1508.	1.4	18
47	Measurements and Ray Tracing Simulations for Non-Line-of-Sight Millimeter-Wave Channels in a Confined Corridor Environment. IEEE Access, 2019, 7, 85066-85081.	4.2	15
48	Vehicular Channel in Urban Environments at 23 GHz for Flexible Access Common Spectrum Application. International Journal of Antennas and Propagation, 2019, 2019, 1-13.	1.2	4
49	Millimeter-Wave Communications for Smart Rail Mobility: From Channel Modeling to Prototyping. , 2019, , .		4
50	An Efficient MIMO Channel Model for LTE-R Network in High-Speed Train Environment. IEEE Transactions on Vehicular Technology, 2019, 68, 3189-3200.	6.3	33
51	Channel Characterization for Intra-Wagon Communication at 60 and 300 GHz Bands. IEEE Transactions on Vehicular Technology, 2019, 68, 5193-5207.	6.3	68
52	Measurement, Simulation, and Characterization of Train-to-Infrastructure Inside-Station Channel at the Terahertz Band. IEEE Transactions on Terahertz Science and Technology, 2019, 9, 291-306.	3.1	60
53	A 3D Non-Stationary Channel Model with Moving Mobile Station in Rectangular Tunnel. International Journal of Antennas and Propagation, 2019, 2019, 1-12.	1.2	3
54	Channel Characterization for Satellite Link and Terrestrial Link of Vehicular Communication in the mmWave Band. IEEE Access, 2019, 7, 173559-173570.	4.2	7

#	Article	IF	CITATIONS
55	Channel Characterization for mmWave V2I Communication in Urban Scenario. , 2019, , .		2
56	Characterization for the Vehicle-to-Infrastructure Channel in Urban and Highway Scenarios at the Terahertz Band. IEEE Access, 2019, 7, 166984-166996.	4.2	26
57	On the Modeling of Near-Field Scattering of Vehicles in Vehicle-to-X Wireless Channels Based on Scattering Centers. IEEE Access, 2019, 7, 3264-3274.	4.2	8
58	Precoding and Detection for Broadband Single Carrier Terahertz Massive MIMO Systems Using LSQR Algorithm. IEEE Transactions on Wireless Communications, 2019, 18, 1026-1040.	9.2	21
59	5-GHz Obstructed Vehicle-to-Vehicle Channel Characterization for Internet of Intelligent Vehicles. IEEE Internet of Things Journal, 2019, 6, 100-110.	8.7	74
60	Stochastic Channel Modeling for Railway Tunnel Scenarios at 25ÂGHz. ETRI Journal, 2018, 40, 39-50.	2.0	16
61	Influence of Typical Railway Objects in a mmWave Propagation Channel. IEEE Transactions on Vehicular Technology, 2018, 67, 2880-2892.	6.3	32
62	A Geometry-Based Stochastic Channel Model for the Millimeter-Wave Band in a 3GPP High-Speed Train Scenario. IEEE Transactions on Vehicular Technology, 2018, 67, 3853-3865.	6.3	40
63	Channel Measurement, Simulation, and Analysis for High-Speed Railway Communications in 5G Millimeter-Wave Band. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 3144-3158.	8.0	117
64	Ray-Tracing Based Validation of Spatial Consistency for Geometry-Based Stochastic Channels. , 2018, , .		9
65	Doppler Shift and Coherence Time of 5G Vehicular Channels at 3.5 GHz. , 2018, , .		12
66	Wireless Coverage Analysis for Intra-Wagon Scenario at 60 GHz Band. , 2018, , .		2
67	Temporal Autocorrelation of Small-Scale Fading Using Leaky Coaxial Cable in Confined Space. IEEE Wireless Communications Letters, 2018, 7, 1082-1085.	5.0	4
68	Towards Realistic High-Speed Train Channels at 5G Millimeter-Wave Band—Part I: Paradigm, Significance Analysis, and Scenario Reconstruction. IEEE Transactions on Vehicular Technology, 2018, 67, 9112-9128.	6.3	109
69	Towards Realistic High-Speed Train Channels at 5G Millimeter-Wave Band—Part II: Case Study for Paradigm Implementation. IEEE Transactions on Vehicular Technology, 2018, 67, 9129-9144.	6.3	62
70	Two-Step Angle-of-Arrival Estimation for Terahertz Communications Based on Correlation of Power-Angular Spectra in Frequency. , 2018, , .		10
71	Cooperative Dynamic Angle of Arrival Estimation Considering Space–Time Correlations for Terahertz Communications. IEEE Transactions on Wireless Communications, 2018, 17, 6029-6041.	9.2	13
72	Resource Allocation for Device-to-Device Communications Underlaying Heterogeneous Cellular Networks Using Coalitional Games. IEEE Transactions on Wireless Communications, 2018, 17, 4163-4176.	9.2	91

#	Article	IF	CITATIONS
73	Scenario modules, rayâ€ŧracing simulations and analysis of millimetre wave and terahertz channels for smart rail mobility. IET Microwaves, Antennas and Propagation, 2018, 12, 501-508.	1.4	27
74	Connected Vehicle Channels: On the Consideration of Electromagnetic Scattering From Local Scatterers. IEEE Transactions on Vehicular Technology, 2018, 67, 7910-7923.	6.3	6
75	On Indoor Millimeter Wave Massive MIMO Channels: Measurement and Simulation. IEEE Journal on Selected Areas in Communications, 2017, 35, 1678-1690.	14.0	188
76	Scenario modules and ray-tracing simulations of millimeter wave and terahertz channels for smart rail mobility. , 2017, , .		22
77	Spatial consistency of dominant components between ray-tracing and stochastic modeling in 3GPP high-speed train scenarios. , 2017, , .		8
78	Stochastic Channel Modeling for Kiosk Applications in the Terahertz Band. IEEE Transactions on Terahertz Science and Technology, 2017, 7, 502-513.	3.1	98
79	Challenges and chances for smart rail mobility at mmWave and THz bands from the channels viewpoint. , 2017, , .		15
80	On Millimeter Wave and THz Mobile Radio Channel for Smart Rail Mobility. IEEE Transactions on Vehicular Technology, 2017, 66, 5658-5674.	6.3	190
81	Significance Analysis for Typical Objects in mmWave Urban Railway Propagation Environment. , 2017, , .		4
82	Channel sounding techniques for applications in THz communications: A first correlation based channel sounder for ultra-wideband dynamic channel measurements at 300 GHz. , 2017, , .		44
83	Wireless Communications in Transportation Systems. Wireless Communications and Mobile Computing, 2017, 2017, 1-2.	1.2	0
84	Wireless Communications in Smart Rail Transportation Systems. Wireless Communications and Mobile Computing, 2017, 2017, 1-10.	1.2	8
85	Efficient environment model for intra-wagon millimeter wave ray-tracing simulation. , 2017, , .		6
86	High-Speed Railway Communications: From GSM-R to LTE-R. IEEE Vehicular Technology Magazine, 2016, 11, 49-58.	3.4	240
87	Excess Propagation Loss of Semi-Closed Obstacles for Inter/Intra-Device Communications in the Millimeter-Wave Range. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 676-690.	2.2	14
88	Measurement and Analysis of Extra Propagation Loss of Tunnel Curve. IEEE Transactions on Vehicular Technology, 2016, 65, 1847-1858.	6.3	21
89	Excess Propagation Loss Modeling of Semiclosed Obstacles for Intelligent Transportation System. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 2171-2181.	8.0	17
90	On the Influence of Scattering From Traffic Signs in Vehicle-to-X Communications. IEEE Transactions on Vehicular Technology, 2016, 65, 5835-5849.	6.3	40

#	Article	IF	CITATIONS
91	Measurements and Analysis of Large-Scale Fading Characteristics in Curved Subway Tunnels at 920 MHz, 2400 MHz, and 5705 MHz. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 2393-2405.	8.0	67
92	Future railway services-oriented mobile communications network. IEEE Communications Magazine, 2015, 53, 78-85.	6.1	271
93	Reducing the Cost of High-Speed Railway Communications: From the Propagation Channel View. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 2050-2060.	8.0	21
94	Propagation Measurements and Modeling of Crossing Bridges on High-Speed Railway at 930 MHz. IEEE Transactions on Vehicular Technology, 2014, 63, 502-517.	6.3	48
95	Propagation Measurements and Analysis for Train Stations of High-Speed Railway at 930 MHz. IEEE Transactions on Vehicular Technology, 2014, 63, 3499-3516.	6.3	84
96	Challenges Toward Wireless Communications for High-Speed Railway. IEEE Transactions on Intelligent Transportation Systems, 2014, 15, 2143-2158.	8.0	376
97	Semi-Deterministic Path-Loss Modeling for Viaduct and Cutting Scenarios of High-Speed Railway. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 789-792.	4.0	31
98	Complete Propagation Model in Tunnels. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 741-744.	4.0	48
99	Deterministic Propagation Modeling for the Realistic High-Speed Railway Environment. , 2013, , .		67
100	Radio Wave Propagation Scene Partitioning for High-Speed Rails. International Journal of Antennas and Propagation, 2012, 2012, 1-7.	1.2	59
101	Assessment of LTE-R Using High Speed Railway Channel Model. , 2011, , .		87
102	An efficient target detection algorithm via Karhunen‣oÃ∵ve transform for frequency modulated continuous wave (FMCW) radar applications. IET Signal Processing, 0, , .	1.5	2