
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1066763/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiology, 2001, 125, 1558-1566.	2.3	2,333
2	PHOTOPROTECTION REVISITED:Genetic and Molecular Approaches. Annual Review of Plant Biology, 1999, 50, 333-359.	14.2	1,731
3	A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature, 2000, 403, 391-395.	13.7	1,354
4	Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 2016, 354, 857-861.	6.0	975
5	Sensing and Responding to Excess Light. Annual Review of Plant Biology, 2009, 60, 239-260.	8.6	890
6	Arabidopsis Mutants Define a Central Role for the Xanthophyll Cycle in the Regulation of Photosynthetic Energy Conversion. Plant Cell, 1998, 10, 1121-1134.	3.1	882
7	Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the United States of America, 2015, 112, 8529-8536.	3.3	751
8	Carotenoid Cation Formation and the Regulation of Photosynthetic Light Harvesting. Science, 2005, 307, 433-436.	6.0	723
9	The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8762-8767.	3.3	624
10	An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature, 2009, 462, 518-521.	13.7	589
11	Safety valves for photosynthesis. Current Opinion in Plant Biology, 2000, 3, 455-460.	3.5	570
12	The roles of specific xanthophylls in photoprotection. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 14162-14167.	3.3	536
13	Architecture of a Charge-Transfer State Regulating Light Harvesting in a Plant Antenna Protein. Science, 2008, 320, 794-797.	6.0	492
14	Regulation of Photosynthetic Light Harvesting Involves Intrathylakoid Lumen pH Sensing by the PsbS Protein. Journal of Biological Chemistry, 2004, 279, 22866-22874.	1.6	483
15	PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15222-15227.	3.3	439
16	Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Current Opinion in Plant Biology, 2013, 16, 307-314.	3.5	421
17	Manipulation of Photoprotection to Improve Plant Photosynthesis. Plant Physiology, 2011, 155, 86-92.	2.3	396
18	High-efficiency homologous recombination in the oil-producing alga <i>Nannochloropsis</i> sp Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21265-21269.	3.3	394

#	Article	IF	CITATIONS
19	Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779. PLoS Genetics, 2012, 8, e1003064.	1.5	376
20	Two P-Type ATPases Are Required for Copper Delivery in Arabidopsis thaliana Chloroplasts. Plant Cell, 2005, 17, 1233-1251.	3.1	316
21	PAA1, a P-Type ATPase of Arabidopsis, Functions in Copper Transport in Chloroplasts. Plant Cell, 2003, 15, 1333-1346.	3.1	301
22	Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13324-13329.	3.3	292
23	Is PsbS the site of non-photochemical quenching in photosynthesis?. Journal of Experimental Botany, 2004, 56, 375-382.	2.4	284
24	Light stress and photoprotection in <i>Chlamydomonas reinhardtii</i> . Plant Journal, 2015, 82, 449-465.	2.8	284
25	Chlamydomonas Xanthophyll Cycle Mutants Identified by Video Imaging of Chlorophyll Fluorescence Quenching Plant Cell, 1997, 9, 1369-1380.	3.1	278
26	Enhanced FIB-SEM systems for large-volume 3D imaging. ELife, 2017, 6, .	2.8	273
27	Analysis of LhcSR3, a Protein Essential for Feedback De-Excitation in the Green Alga Chlamydomonas reinhardtii. PLoS Biology, 2011, 9, e1000577.	2.6	260
28	Singlet oxygen and photo-oxidative stress management in plants and algae. Plant, Cell and Environment, 2005, 28, 1037-1045.	2.8	251
29	Zeaxanthin Accumulation in the Absence of a Functional Xanthophyll Cycle Protects Chlamydomonas reinhardtii from Photooxidative Stress. Plant Cell, 2003, 15, 992-1008.	3.1	230
30	Ascorbate Deficiency Can Limit Violaxanthin De-Epoxidase Activity in Vivo. Plant Physiology, 2002, 128, 970-977.	2.3	220
31	Photodamage of the Photosynthetic Apparatus and Its Dependence on the Leaf Developmental Stage in the npq1 Arabidopsis Mutant Deficient in the Xanthophyll Cycle Enzyme Violaxanthin De-epoxidase. Plant Physiology, 2000, 124, 273-284.	2.3	218
32	Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4377-4382.	3.3	199
33	Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis. Photosynthesis Research, 2001, 67, 139-145.	1.6	194
34	A Major Light-Harvesting Polypeptide of Photosystem II Functions in Thermal Dissipation[W]. Plant Cell, 2002, 14, 1801-1816.	3.1	193
35	Zeaxanthin Radical Cation Formation in Minor Light-harvesting Complexes of Higher Plant Antenna. Journal of Biological Chemistry, 2008, 283, 3550-3558.	1.6	193
36	A Dual Strategy to Cope with High Light in <i>Chlamydomonas reinhardtii</i> Â. Plant Cell, 2013, 25, 545-557.	3.1	193

#	Article	IF	CITATIONS
37	Ascorbate-Deficient Mutants of Arabidopsis Grow in High Light Despite Chronic Photooxidative Stress. Plant Physiology, 2004, 134, 1163-1172.	2.3	189
38	Two anthranilate synthase genes in Arabidopsis: defense-related regulation of the tryptophan pathway Plant Cell, 1992, 4, 721-733.	3.1	188
39	Functional Genomics of Eukaryotic Photosynthesis Using Insertional Mutagenesis of Chlamydomonas reinhardtii. Plant Physiology, 2005, 137, 545-556.	2.3	186
40	Lutein Accumulation in the Absence of Zeaxanthin Restores Nonphotochemical Quenching in the <i>Arabidopsis thaliana npq1</i> Mutant Â. Plant Cell, 2009, 21, 1798-1812.	3.1	183
41	Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop. Nature Communications, 2018, 9, 868.	5.8	181
42	Zeaxanthin Deficiency Enhances the High Light Sensitivity of an Ascorbate-Deficient Mutant of Arabidopsis. Plant Physiology, 2003, 133, 748-760.	2.3	155
43	Acclimation to Singlet Oxygen Stress in Chlamydomonas reinhardtii. Eukaryotic Cell, 2007, 6, 919-930.	3.4	151
44	Molecular genetics of xanthophyll–dependent photoprotection in green algae and plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1385-1394.	1.8	138
45	Rhesus expression in a green alga is regulated by CO2. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7769-7773.	3.3	137
46	A kinetic model of rapidly reversible nonphotochemical quenching. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15757-15762.	3.3	133
47	Structure - function analysis of photosystem II subunit S (PsbS) in vivo. Functional Plant Biology, 2002, 29, 1131.	1.1	132
48	The Arabidopsis <i>szl1</i> Mutant Reveals a Critical Role of β-Carotene in Photosystem I Photoprotection Â. Plant Physiology, 2012, 159, 1745-1758.	2.3	131
49	Chromosome-level genome assembly and transcriptome of the green alga <i>Chromochloris zofingiensis</i> illuminates astaxanthin production. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4296-E4305.	3.3	131
50	UV-B photoreceptor-mediated protection of the photosynthetic machinery in <i>Chlamydomonas reinhardtii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14864-14869.	3.3	129
51	Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 27124-27132.	3.3	129
52	Chlamydomonas Xanthophyll Cycle Mutants Identified by Video Imaging of Chlorophyll Fluorescence Quenching. Plant Cell, 1997, 9, 1369.	3.1	127
53	Proton Gradient Regulation 5-Mediated Cyclic Electron Flow under ATP- or Redox-Limited Conditions: A Study of ÆŠ <i>ATPase pgr5</i> and ÆŠ <i>rbcL pgr5</i> Mutants in the Green Alga <i>Chlamydomonas reinhardtii</i> Â Â Â. Plant Physiology, 2014, 165, 438-452.	2.3	127
54	The multiple roles of light-harvesting chlorophyll a/b-protein complexes define structure and optimize function of Arabidopsis chloroplasts: A study using two chlorophyll b-less mutants. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 973-984.	0.5	124

#	Article	IF	CITATIONS
55	Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes. Nature Plants, 2017, 3, 17033.	4.7	121
56	Photo-oxidative Stress in a Xanthophyll-deficient Mutant of Chlamydomonas. Journal of Biological Chemistry, 2004, 279, 6337-6344.	1.6	110
57	Retrograde bilin signaling enables <i>Chlamydomonas</i> greening and phototrophic survival. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3621-3626.	3.3	107
58	Photosystem II Subunit PsbS Is Involved in the Induction of LHCSR Protein-dependent Energy Dissipation in Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2016, 291, 17478-17487.	1.6	100
59	Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2016, 291, 7334-7346.	1.6	100
60	<i>SINGLET OXYGEN RESISTANT 1</i> links reactive electrophile signaling to singlet oxygen acclimation in <i>Chlamydomonas reinhardtii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1302-11.	3.3	95
61	Photosynthesis of Root Chloroplasts Developed in Arabidopsis Lines Overexpressing GOLDEN2-LIKE Transcription Factors. Plant and Cell Physiology, 2013, 54, 1365-1377.	1.5	94
62	Photosynthetic antenna engineering to improve crop yields. Planta, 2017, 245, 1009-1020.	1.6	94
63	The Plastid Lipocalin LCNP Is Required for Sustained Photoprotective Energy Dissipation in Arabidopsis. Plant Cell, 2018, 30, 196-208.	3.1	93
64	Molecular and Global Time-resolved Analysis of a psbSGene Dosage Effect on pH- and Xanthophyll Cycle-dependent Nonphotochemical Quenching in Photosystem II. Journal of Biological Chemistry, 2002, 277, 33590-33597.	1.6	92
65	Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae. Nature Plants, 2015, 1, 15107.	4.7	89
66	Absence of Lutein, Violaxanthin and Neoxanthin Affects the Functional Chlorophyll Antenna Size of Photosystem-II but not that of Photosystem-I in the Green Alga Chlamydomonas reinhardtii. Plant and Cell Physiology, 2001, 42, 482-491.	1.5	87
67	Introduction of a Synthetic CO2-fixing Photorespiratory Bypass into a Cyanobacterium. Journal of Biological Chemistry, 2014, 289, 9493-9500.	1.6	87
68	The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in <i>Nannochloropsis oceanica</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4537-4542.	3.3	86
69	Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii. Trends in Plant Science, 2001, 6, 364-371.	4.3	84
70	Chlorophyll–carotenoid excitation energy transfer and charge transfer in <i>Nannochloropsis oceanica</i> for the regulation of photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3385-3390.	3.3	81
71	White Mutants of Chlamydomonas reinhardtii Are Defective in Phytoene SynthaseSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY604700, PSY (137c) cDNA; AY604701, PSY (137c) genomic DNA; AY604702, PSY (S1D2) genomic DNA; and AY604703, PDS (137c) cDNA. Genetics. 2004. 168. 1249-1257.	1.2	80
72	Copper Delivery by the Copper Chaperone for Chloroplast and Cytosolic Copper/Zinc-Superoxide Dismutases: Regulation and Unexpected Phenotypes in an Arabidopsis Mutant. Molecular Plant, 2009, 2, 1336-1350.	3.9	80

#	Article	IF	CITATIONS
73	Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis. Photosynthesis Research, 2010, 105, 39-49.	1.6	80
74	Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants. Plant, Cell and Environment, 2006, 29, 879-887.	2.8	78
75	An evaluation of new and established methods to determine Tâ€DNA copy number and homozygosity in transgenic plants Plant, Cell and Environment, 2016, 39, 908-917.	2.8	77
76	Lutein Can Act as a Switchable Charge Transfer Quencher in the CP26 Light-harvesting Complex. Journal of Biological Chemistry, 2009, 284, 2830-2835.	1.6	72
77	A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2733-40.	3.3	72
78	Regulation and Levels of the Thylakoid K ⁺ /H ⁺ Antiporter KEA3 Shape the Dynamic Response of Photosynthesis in Fluctuating Light. Plant and Cell Physiology, 2016, 57, pcw085.	1.5	70
79	Arabidopsis Mutants Define a Central Role for the Xanthophyll Cycle in the Regulation of Photosynthetic Energy Conversion. Plant Cell, 1998, 10, 1121.	3.1	67
80	Chlamydomonas and Arabidopsis. A Dynamic Duo: Figure 1 Plant Physiology, 2004, 135, 607-610.	2.3	66
81	Largeâ€scale insertional mutagenesis of <i>Chlamydomonas</i> supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetateâ€requiring mutants. Plant Journal, 2015, 82, 337-351.	2.8	65
82	Quantitative Genetic Analysis of Thermal Dissipation in Arabidopsis Â. Plant Physiology, 2009, 150, 977-986.	2.3	62
83	A Conserved Rubredoxin Is Necessary for Photosystem II Accumulation in Diverse Oxygenic Photoautotrophs. Journal of Biological Chemistry, 2013, 288, 26688-26696.	1.6	61
84	Regulation of Oxygenic Photosynthesis during Trophic Transitions in the Green Alga <i>Chromochloris zofingiensis</i> . Plant Cell, 2019, 31, 579-601.	3.1	61
85	Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17498-17503.	3.3	57
86	Vibronic mixing enables ultrafast energy flow in light-harvesting complex II. Nature Communications, 2020, 11, 1460.	5.8	57
87	Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation. Photosynthesis Research, 2010, 106, 3-17.	1.6	51
88	Evidence for Base Excision Repair of Oxidative DNA Damage in Chloroplasts of Arabidopsis thaliana. Journal of Biological Chemistry, 2009, 284, 17006-17012.	1.6	50
89	Evolution of an atypical de-epoxidase for photoprotection in the green lineage. Nature Plants, 2016, 2, 16140.	4.7	50
90	Suppressors of trp1 Fluorescence Identify a New Arabidopsis Gene, TRP4, Encoding the Anthranilate Synthase b Subunit. Plant Cell, 1993, 5, 1011.	3.1	49

#	Article	IF	CITATIONS
91	Overlapping Photoprotective Function of Vitamin E and Carotenoids in <i>Chlamydomonas</i> Â Â Â. Plant Physiology, 2012, 158, 313-323.	2.3	49
92	Dissecting and modeling zeaxanthin- and lutein-dependent nonphotochemical quenching in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7009-E7017.	3.3	46
93	Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes. Journal of Biological Chemistry, 2015, 290, 14091-14106.	1.6	45
94	Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii. ELife, 2014, 3, e02286.	2.8	45
95	Regulation of photoprotection gene expression in <i>Chlamydomonas</i> by a putative E3 ubiquitin ligase complex and a homolog of CONSTANS. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17556-17562.	3.3	44
96	Chlorophyll-Carotenoid Excitation Energy Transfer in High-Light-Exposed Thylakoid Membranes Investigated by Snapshot Transient Absorption Spectroscopy. Journal of the American Chemical Society, 2018, 140, 11965-11973.	6.6	43
97	Genomic analysis of mutants affecting xanthophyll biosynthesis and regulation of photosynthetic light harvesting in Chlamydomonas reinhardtii. Photosynthesis Research, 2004, 82, 265-276.	1.6	42
98	Systematic characterization of gene function in the photosynthetic alga Chlamydomonas reinhardtii. Nature Genetics, 2022, 54, 705-714.	9.4	42
99	The <scp>GUN</scp> 4 protein plays a regulatory role in tetrapyrrole biosynthesis and chloroplastâ€toâ€nucleus signalling in <i><scp>C</scp>hlamydomonas reinhardtii</i> . Plant Journal, 2014, 79, 285-298.	2.8	41
100	An algal enzyme required for biosynthesis of the most abundant marine carotenoids. Science Advances, 2020, 6, eaaw9183.	4.7	41
101	Use of a Pulse-Amplitude Modulated Chlorophyll Fluorometer to Study the Efficiency of Photosynthesis in Arabidopsis Plants. Methods in Molecular Biology, 2011, 775, 299-310.	0.4	38
102	Fluorescence lifetime snapshots reveal two rapidly reversible mechanisms of photoprotection in live cells of <i>Chlamydomonas reinhardtii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8405-8410.	3.3	37
103	A unique supramolecular organization of photosystem I in the moss Physcomitrella patens. Nature Plants, 2018, 4, 904-909.	4.7	36
104	Subdiffractionâ€resolution liveâ€cell imaging for visualizing thylakoid membranes. Plant Journal, 2018, 96, 233-243.	2.8	36
105	Chlorophyll-deficient mutants of Chlamydomonas reinhardtii that accumulate magnesium protoporphyrin IX. Plant Molecular Biology, 2010, 72, 643-658.	2.0	34
106	Transient expression in <i>Nicotiana benthamiana</i> for rapid functional analysis of genes involved in nonâ€photochemical quenching and carotenoid biosynthesis. Plant Journal, 2016, 88, 375-386.	2.8	34
107	Engineering the lutein epoxide cycle into <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7002-E7008.	3.3	34
108	Quantitative imaging of RNA polymerase II activity in plants reveals the single-cell basis of tissue-wide transcriptional dynamics. Nature Plants, 2021, 7, 1037-1049.	4.7	34

#	Article	IF	CITATIONS
109	Hexokinase is necessary for glucose-mediated photosynthesis repression and lipid accumulation in a green alga. Communications Biology, 2019, 2, 347.	2.0	30
110	A thylakoid membrane-bound and redox-active rubredoxin (RBD1) functions in de novo assembly and repair of photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16631-16640.	3.3	30
111	Widespread polycistronic gene expression in green algae. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
112	A Sec14 domain protein is required for photoautotrophic growth and chloroplast vesicle formation in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9101-9111.	3.3	28
113	Role of an ancient light-harvesting protein of PSI in light absorption and photoprotection. Nature Communications, 2021, 12, 679.	5.8	28
114	Complex Roles of PsbS and Xanthophylls in the Regulation of Nonphotochemical Quenching in <i>Arabidopsis thaliana</i> under Fluctuating Light. Journal of Physical Chemistry B, 2020, 124, 10311-10325.	1.2	27
115	An atypical short-chain dehydrogenase–reductase functions in the relaxation of photoprotective qH in Arabidopsis. Nature Plants, 2020, 6, 154-166.	4.7	27
116	Mg chelatase in chlorophyll synthesis and retrograde signaling in <i>Chlamydomonas reinhardtii</i> : CHLl2 cannot substitute for CHLl1. Journal of Experimental Botany, 2016, 67, 3925-3938.	2.4	26
117	Snapshot Transient Absorption Spectroscopy of Carotenoid Radical Cations in High-Light-Acclimating Thylakoid Membranes. Journal of Physical Chemistry Letters, 2017, 8, 5548-5554.	2.1	26
118	High light and temperature reduce photosynthetic efficiency through different mechanisms in the C4 model Setaria viridis. Communications Biology, 2021, 4, 1092.	2.0	25
119	Intragenic Enhancers and Suppressors of Phytoene Desaturase Mutations in Chlamydomonas reinhardtii. PLoS ONE, 2012, 7, e42196.	1.1	24
120	Novel Thylakoid Membrane GreenCut Protein CPLD38 Impacts Accumulation of the Cytochrome b6f Complex and Associated Regulatory Processes. Journal of Biological Chemistry, 2013, 288, 7024-7036.	1.6	22
121	Atomic Force Microscopy of Photosystem II and Its Unit Cell Clustering Quantitatively Delineate the Mesoscale Variability in Arabidopsis Thylakoids. PLoS ONE, 2014, 9, e101470.	1.1	21
122	The role of mixed vibronic Qy-Qx states in green light absorption of light-harvesting complex II. Nature Communications, 2020, 11, 6011.	5.8	20
123	<i>Chlamydomonas</i> as a model for reactive oxygen species signaling and thiol redox regulation in the green lineage. Plant Physiology, 2021, 187, 687-698.	2.3	18
124	Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. PLoS Genetics, 2021, 17, e1009725.	1.5	18
125	Chloroplast Sec14-like 1 (CPSFL1) is essential for normal chloroplast development and affects carotenoid accumulation in <i>Chlamydomonas</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12452-12463.	3.3	17
126	Title is missing!. Photosynthesis Research, 1997, 53, 173-184.	1.6	12

#	Article	IF	CITATIONS
127	Natural ultraviolet radiation exposure alters photosynthetic biology and improves recovery from desiccation in a desert moss. Journal of Experimental Botany, 2021, 72, 4161-4179.	2.4	12
128	GreenCut protein <scp>CPLD</scp> 49 of <i>Chlamydomonas reinhardtii</i> associates with thylakoid membranes and is required for cytochrome <i>b</i> ₆ <i>f</i> complex accumulation. Plant Journal, 2018, 94, 1023-1037.	2.8	10
129	Dynamic Mechanical Responses of Arabidopsis Thylakoid Membranes during PSII-Specific Illumination. Biophysical Journal, 2014, 106, 1864-1870.	0.2	9
130	Deletion of the gene family of small chlorophyll-binding proteins (ScpABCDE) offsets C/N homeostasis in Synechocystis PCC 6803. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 396-407.	0.5	9
131	Xanthophyll-cycle based model of the rapid photoprotection of <i>Nannochloropsis</i> in response to regular and irregular light/dark sequences. Journal of Chemical Physics, 2022, 156, .	1.2	9
132	Editorial overview: Physiology and metabolism: Light responses from photoreceptors to photosynthesis and photoprotection. Current Opinion in Plant Biology, 2017, 37, iv-vi.	3.5	8
133	Chromatin Changes in Phytochrome Interacting Factor-Regulated Genes Parallel Their Rapid Transcriptional Response to Light. Frontiers in Plant Science, 2022, 13, 803441.	1.7	8
134	Interplay between LHCSR proteins and state transitions governs the NPQ response in <i>Chlamydomonas</i> during light fluctuations. Plant, Cell and Environment, 2022, 45, 2428-2445.	2.8	8
135	Genotypeâ€dependent contribution of CBF transcription factors to longâ€ŧerm acclimation to high light and cool temperature. Plant, Cell and Environment, 2022, 45, 392-411.	2.8	7
136	Atomic Force Microscopy Visualizes Mobility of Photosynthetic Proteins in Grana Thylakoid Membranes. Biophysical Journal, 2020, 118, 1876-1886.	0.2	6
137	Title is missing!. Photosynthesis Research, 1999, 61, 97-98.	1.6	0