Anette M Karlsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10666583/publications.pdf

Version: 2024-02-01

37 papers

2,067 citations

257450 24 h-index 36 g-index

37 all docs

37 docs citations

37 times ranked

1303 citing authors

#	Article	IF	CITATIONS
1	Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle. Journal of Power Sources, 2006, 161, 987-996.	7.8	274
2	An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 425, 297-304.	5.6	247
3	Mechanical behavior of fuel cell membranes under humidity cycles and effect of swelling anisotropy on the fatigue stresses. Journal of Power Sources, 2007, 170, 345-358.	7.8	222
4	Mechanical properties of a reinforced composite polymer electrolyte membrane and its simulated performance in PEM fuel cells. Journal of Power Sources, 2008, 175, 817-825.	7.8	132
5	Mechanical behavior of bio-inspired laminated composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 211-220.	7.6	116
6	Stresses in Proton Exchange Membranes Due to Hygro-Thermal Loading. Journal of Fuel Cell Science and Technology, 2006, 3, 119-124.	0.8	115
7	Constitutive response and mechanical properties of PFSA membranes in liquid water. Journal of Power Sources, 2010, 195, 483-492.	7.8	62
8	Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior. Journal of Materials Research, 2008, 23, 2854-2872.	2.6	61
9	Effect of time-dependent material properties on the mechanical behavior of PFSA membranes subjected to humidity cycling. Journal of Power Sources, 2012, 214, 365-376.	7.8	60
10	Aspects of fatigue failure mechanisms in polymer fuel cell membranes. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1506-1517.	2.1	59
11	An experimental investigation of strain rate, temperature and humidity effects on the mechanical behavior of a perfluorosulfonic acid membrane. Journal of Power Sources, 2012, 214, 130-136.	7.8	56
12	Numerical Investigation of Mechanical Durability in Polymer Electrolyte Membrane Fuel Cells. Journal of the Electrochemical Society, 2010, 157, B705.	2.9	55
13	Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction. Nature Communications, 2014, 5, 4559.	12.8	50
14	On TGO creep and the initiation of a class of fatigue cracks in thermal barrier coatings. Surface and Coatings Technology, 2009, 203, 3549-3558.	4.8	44
15	Stress-Strain Behavior of Perfluorosulfonic Acid Membranes at Various Temperatures and Humidities: Experiments and Phenomenological Modeling. Journal of Fuel Cell Science and Technology, 2009, 6, .	0.8	39
16	Effect of gas diffusion layer modulus and land–groove geometry on membrane stresses in proton exchange membrane fuel cells. Journal of Power Sources, 2011, 196, 4646-4654.	7.8	39
17	Time-dependent mechanical response of a composite PFSA membrane. Journal of Power Sources, 2013, 228, 256-269.	7.8	39
18	Mechanics-based analysis of selected features of the exoskeletal microstructure of <i>Popillia japonica </i> . Journal of Materials Research, 2009, 24, 3253-3267.	2.6	38

#	Article	IF	Citations
19	Numerical evaluation of crack growth in polymer electrolyte fuel cell membranes based on plastically dissipated energy. Journal of Power Sources, 2016, 316, 114-123.	7.8	38
20	Micromechanics model based on the nanostructure of PFSA membranes. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2404-2417.	2.1	29
21	Mechanics-based model for non-affine swelling in perfluorosulfonic acid (PFSA) membranes. Polymer, 2009, 50, 2481-2491.	3.8	29
22	Time-dependent mechanical behavior of proton exchange membrane fuel cell electrodes. Journal of Power Sources, 2014, 245, 543-552.	7.8	28
23	Numerical evaluation of Paris-regime crack growth rate based on plastically dissipated energy. Engineering Fracture Mechanics, 2014, 124-125, 155-166.	4.3	28
24	Structure-property relationship in ionomer membranes. Polymer, 2010, 51, 1457-1464.	3.8	27
25	Piezospectroscopic evaluation and damage identification for thermal barrier coatings subjected to simulated engine environments. Surface and Coatings Technology, 2017, 323, 30-38.	4.8	26
26	Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients. Review of Scientific Instruments, 2013, 84, 083904.	1.3	25
27	Numerical evaluation of fatigue crack growth in polymers based on plastically dissipated energy. International Journal of Fatigue, 2017, 94, 89-96.	5.7	23
28	Monitoring Local Strain in a Thermal Barrier Coating System Under Thermal Mechanical Gas Turbine Operating Conditions. Jom, 2015, 67, 1528-1539.	1.9	19
29	On cracks and delaminations of thermal barrier coatings due to indentation testing: Experimental investigations. Acta Materialia, 2008, 56, 4080-4090.	7.9	14
30	On stresses induced in a thermal barrier coating due to indentation testing. Computational Materials Science, 2009, 44, 1178-1191.	3.0	14
31	Implementation of a plastically dissipated energy criterion for three dimensional modeling of fatigue crack growth. International Journal of Fatigue, 2013, 54, 47-55.	5.7	14
32	In situ analysis of fatigue crack propagation in polymer foams. Engineering Fracture Mechanics, 2013, 101, 23-32.	4.3	12
33	In situ analysis of crack propagation in polymer foams. Journal of Materials Science, 2011, 46, 5487-5494.	3.7	9
34	Capturing the Competing Influence of Thermal and Mechanical Loads on the Strain of Turbine Blade Coatings via High Energy X-rays. Coatings, 2018, 8, 320.	2.6	9
35	Stresses in Proton Exchange Membranes Due to Hydration-Dehydration Cycles. , 2005, , 207.		6
36	Fatigue crack propagation in polyvinylchloride and polyethersulfone polymer foams. Journal of Sandwich Structures and Materials, 2014, 16, 42-65.	3.5	6

ANETTE M KARLSSON

#	Article	IF	CITATIONS
37	A double cantilever beam specimen for foam core fracture characterization. Journal of Sandwich Structures and Materials, 2012, 14, 281-295.	3.5	3