Anming Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1066345/publications.pdf

Version: 2024-02-01

100 papers 4,971 citations

36 h-index 102487 66 g-index

106 all docs

106 docs citations

106 times ranked 8440 citing authors

#	Article	IF	CITATIONS
1	The rise of developmental biology in China. Development Growth and Differentiation, 2022, 64, 106-115.	1.5	3
2	The second polar body contributes to the fate asymmetry in the mouse embryo. National Science Review, 2022, 9 , .	9.5	4
3	Maternal Factors and Nodal Autoregulation Orchestrate Nodal Gene Expression for Embryonic Mesendoderm Induction in the Zebrafish. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	4
4	$TGF\hat{I}^2$ family signaling and development. Development (Cambridge), 2021, 148, .	2.5	39
5	A Golgi-derived vesicle potentiates PtdIns4P to PtdIns3P conversion for endosome fission. Nature Cell Biology, 2021, 23, 782-795.	10.3	13
6	5′ Half of specific tRNAs feeds back to promote corresponding tRNA gene transcription in vertebrate embryos. Science Advances, 2021, 7, eabh0494.	10.3	18
7	Methylome inheritance and enhancer dememorization reset an epigenetic gate safeguarding embryonic programs. Science Advances, 2021, 7, eabl3858.	10.3	12
8	Systematic genome editing of the genes on zebrafish Chromosome 1 by CRISPR/Cas9. Genome Research, 2020, 30, 118-126.	5.5	32
9	Mini-III RNase-based dual-color system for <i>in vivo</i> mRNA tracking. Development (Cambridge), 2020, 147, .	2.5	1
10	Efficient and risk-reduced genome editing using double nicks enhanced by bacterial recombination factors in multiple species. Nucleic Acids Research, 2020, 48, e57-e57.	14.5	2
11	Migrasomes provide regional cues for organ morphogenesis during zebrafish gastrulation. Nature Cell Biology, 2019, 21, 966-977.	10.3	122
12	RNA 5-Methylcytosine Facilitates the Maternal-to-Zygotic Transition by Preventing Maternal mRNA Decay. Molecular Cell, 2019, 75, 1188-1202.e11.	9.7	242
13	Sec14l3 potentiates VEGFR2 signaling to regulate zebrafish vasculogenesis. Nature Communications, 2019, 10, 1606.	12.8	17
14	A harlequin ichthyosis pig model with a novel ABCA12 mutation can be rescued by acitretin treatment. Journal of Molecular Cell Biology, 2019, 11, 1029-1041.	3.3	10
15	Maternal Huluwa dictates the embryonic body axis through \hat{I}^2 -catenin in vertebrates. Science, 2018, 362, .	12.6	52
16	Widespread Enhancer Dememorization and Promoter Priming during Parental-to-Zygotic Transition. Molecular Cell, 2018, 72, 673-686.e6.	9.7	57
17	The genetic program of oocytes can be modified <i>in vivo</i> in the zebrafish ovary. Journal of Molecular Cell Biology, 2018, 10, 479-493.	3.3	15
18	prpf4 is essential for cell survival and posterior lateral line primordium migration in zebrafish. Journal of Genetics and Genomics, 2018, 45, 443-453.	3.9	5

#	Article	IF	CITATIONS
19	Maternal Ybx1 safeguards zebrafish oocyte maturation and maternal-to-zygotic transition by repressing global translation. Development (Cambridge), 2018, 145, .	2.5	43
20	Impairment of Cargo Transportation Caused by gbf1 Mutation Disrupts Vascular Integrity and Causes Hemorrhage in Zebrafish Embryos. Journal of Biological Chemistry, 2017, 292, 2315-2327.	3.4	14
21	The signalling receptor MCAM coordinates apical-basal polarity and planar cell polarity during morphogenesis. Nature Communications, 2017, 8, 15279.	12.8	17
22	A 2-bp insertion (c.67_68insCC) in MC1R causes recessive white coat color in Bama miniature pigs. Journal of Genetics and Genomics, 2017, 44, 215-217.	3.9	20
23	Creation of miniature pig model of human Waardenburg syndrome type 2A by ENU mutagenesis. Human Genetics, 2017, 136, 1463-1475.	3.8	28
24	Thyroid hormone regulates hematopoiesis via the TR-KLF9 axis. Blood, 2017, 130, 2161-2170.	1.4	40
25	Zebrafish cdc6 hypomorphic mutation causes Meier-Gorlin syndrome-like phenotype. Human Molecular Genetics, 2017, 26, 4168-4180.	2.9	20
26	Alkbh4 and Atrn Act Maternally to Regulate Zebrafish Epiboly. International Journal of Biological Sciences, 2017, 13, 1051-1066.	6.4	11
27	Pilot study of large-scale production of mutant pigs by ENU mutagenesis. ELife, 2017, 6, .	6.0	32
28	The Sec14-like phosphatidylinositol transfer proteins Sec14l3/SEC14L2 act as GTPase proteins to mediate Wnt/Ca2+ signaling. ELife, 2017, 6, .	6.0	23
29	Guidelines for morpholino use in zebrafish. PLoS Genetics, 2017, 13, e1007000.	3.5	255
30	Coordinate involvement of Nodal-dependent inhibition and Wnt-dependent activation in the maintenance of organizer-specific bmp2b in zebrafish. International Journal of Developmental Biology, 2016, 60, 13-19.	0.6	3
31	Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature, 2016, 537, 553-557.	27.8	516
32	Fscn1 is required for the trafficking of TGF- \hat{I}^2 family type I receptors during endoderm formation. Nature Communications, 2016, 7, 12603.	12.8	28
33	Embryonic hematopoiesis in vertebrate somites gives rise to definitive hematopoietic stem cells. Journal of Molecular Cell Biology, 2016, 8, 288-301.	3.3	16
34	Eph-ephrin signaling maintains the boundary of dorsal forerunner cell cluster during morphogenesis of the zebrafish embryonic left-right organizer. Development (Cambridge), 2016, 143, 2603-15.	2.5	24
35	A Genetic Mechanism for Convergent Skin Lightening during Recent Human Evolution. Molecular Biology and Evolution, 2016, 33, 1177-1187.	8.9	43
36	Detection of Smad Signaling in Zebrafish Embryos. Methods in Molecular Biology, 2016, 1344, 275-286.	0.9	1

#	Article	IF	Citations
37	The Chromatin Remodeling Protein Bptf Promotes Posterior Neuroectodermal Fate by Enhancing Smad2-Activated <i>wnt8a </i> Expression. Journal of Neuroscience, 2015, 35, 8493-8506.	3.6	17
38	$TGF\hat{l}^21$ a regulates zebrafish posterior lateral line formation via Smad5 mediated pathway. Journal of Molecular Cell Biology, 2015, 7, 48-61.	3.3	14
39	The Kinase Activity-deficient Isoform of the Protein Araf Antagonizes Ras/Mitogen-activated Protein Kinase (Ras/MAPK) Signaling in the Zebrafish Embryo. Journal of Biological Chemistry, 2015, 290, 25512-25521.	3.4	8
40	Uracil-DNA Glycosylase Is Involved in DNA Demethylation and Required for Embryonic Development in the Zebrafish Embryo. Journal of Biological Chemistry, 2014, 289, 15463-15473.	3.4	23
41	Organizer-derived Bmp2 is required for the formation of a correct Bmp activity gradient during embryonic development. Nature Communications, 2014, 5, 3766.	12.8	30
42	Inhibition of endothelial ERK signalling by Smad1/5 is essential for haematopoietic stem cell emergence. Nature Communications, 2014, 5, 3431.	12.8	40
43	Destabilizing LSD1 by Jade-2 Promotes Neurogenesis: An Antibraking System in Neural Development. Molecular Cell, 2014, 55, 482-494.	9.7	89
44	Maternal Eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos. Journal of Molecular Cell Biology, 2014, 6, 272-285.	3.3	29
45	The Nuclear Pore Complex Function of Sec13 Protein Is Required for Cell Survival during Retinal Development. Journal of Biological Chemistry, 2014, 289, 11971-11985.	3.4	33
46	MicroRNA-92a Upholds Bmp Signaling by Targeting noggin3 during Pharyngeal Cartilage Formation. Developmental Cell, 2013, 24, 283-295.	7.0	78
47	Araf kinase antagonizes Nodal-Smad2 activity in mesendoderm development by directly phosphorylating the Smad2 linker region. Nature Communications, 2013, 4, 1728.	12.8	28
48	\hat{l}^2 -Catenin 1 and \hat{l}^2 -catenin 2 play similar and distinct roles in left-right asymmetric development of zebrafish embryos. Development (Cambridge), 2012, 139, 2009-2019.	2.5	46
49	The Amotl2 Gene Inhibits Wnt/\hat{l}^2 -Catenin Signaling and Regulates Embryonic Development in Zebrafish. Journal of Biological Chemistry, 2012, 287, 13005-13015.	3.4	42
50	Midbrain-hindbrain boundary patterning and morphogenesis are regulated by diverse grainy head-like 2-dependent pathways. Development (Cambridge), 2012, 139, 525-536.	2.5	34
51	Loss of Zygotic NUP107 Protein Causes Missing of Pharyngeal Skeleton and Other Tissue Defects with Impaired Nuclear Pore Function in Zebrafish Embryos. Journal of Biological Chemistry, 2012, 287, 38254-38264.	3.4	23
52	MicroRNA-206 Regulates Cell Movements during Zebrafish Gastrulation by Targeting <i>prickle1a</i> and Regulating c-Jun N-Terminal Kinase 2 Phosphorylation. Molecular and Cellular Biology, 2012, 32, 2934-2942.	2.3	23
53	Protein Phosphatase 4 Cooperates with Smads to Promote BMP Signaling in Dorsoventral Patterning of Zebrafish Embryos. Developmental Cell, 2012, 22, 1065-1078.	7.0	22
54	Endothelial Smad4 Maintains Cerebrovascular Integrity by Activating N-Cadherin through Cooperation with Notch. Developmental Cell, 2011, 20, 291-302.	7.0	209

#	Article	IF	CITATIONS
55	SCF ^{FBXL15} regulates BMP signalling by directing the degradation of HECT-type ubiquitin ligase Smurf1. EMBO Journal, 2011, 30, 2675-2689.	7.8	50
56	Angiomotin-like2 Gene (amotl2) Is Required for Migration and Proliferation of Endothelial Cells during Angiogenesis. Journal of Biological Chemistry, 2011, 286, 41095-41104.	3.4	72
57	Grhl2 deficiency impairs otic development and hearing ability in a zebrafish model of the progressive dominant hearing loss DFNA28. Human Molecular Genetics, 2011, 20, 3213-3226.	2.9	74
58	Global Identification of SMAD2 Target Genes Reveals a Role for Multiple Co-regulatory Factors in Zebrafish Early Gastrulas. Journal of Biological Chemistry, 2011, 286, 28520-28532.	3.4	50
59	Interruption of cenph Causes Mitotic Failure and Embryonic Death, and Its Haploinsufficiency Suppresses Cancer in Zebrafish. Journal of Biological Chemistry, 2010, 285, 27924-27934.	3.4	21
60	The Fused/Smurf Complex Controls the Fate of Drosophila Germline Stem Cells by Generating a Gradient BMP Response. Cell, 2010, 143, 978-990.	28.9	123
61	Rock2 controls $TGF\hat{l}^2$ signaling and inhibits mesoderm induction in zebrafish embryos. Journal of Cell Science, 2009, 122, 2197-2207.	2.0	30
62	Both foxj1a and foxj1b are implicated in left–right asymmetric development in zebrafish embryos. Biochemical and Biophysical Research Communications, 2009, 380, 537-542.	2.1	29
63	Smad2/3 activities are required for induction and patterning of the neuroectoderm in zebrafish. Developmental Biology, 2009, 333, 273-284.	2.0	35
64	A zebrafish gene trap line expresses GFP recapturing expression pattern of foxj1b. Journal of Genetics and Genomics, 2009, 36, 581-589.	3.9	25
65	Mta3-NuRD complex is a master regulator for initiation of primitive hematopoiesis in vertebrate embryos. Blood, 2009, 114, 5464-5472.	1.4	46
66	smad2 and smad3 Are Required for Mesendoderm Induction by Transforming Growth Factor- \hat{l}^2 /Nodal Signals in Zebrafish. Journal of Biological Chemistry, 2008, 283, 2418-2426.	3 . 4	53
67	Dapper1 Is a Nucleocytoplasmic Shuttling Protein That Negatively Modulates Wnt Signaling in the Nucleus. Journal of Biological Chemistry, 2008, 283, 35679-35688.	3.4	51
68	Accelerated re-epithelialization in <i>Dpr2</i> -deficient mice is associated with enhanced response to TGF \hat{I}^2 signaling. Journal of Cell Science, 2008, 121, 2904-2912.	2.0	30
69	Heart-specific isoform of tropomyosin4 is essential for heartbeat in zebrafish embryos. Cardiovascular Research, 2008, 80, 200-208.	3.8	43
70	The evolutionally conserved activity of Dapper2 in antagonizing TGFâ€ÃŸ signaling. FASEB Journal, 2007, 21, 682-690.	0.5	55
71	Smad7 Antagonizes Transforming Growth Factor \hat{I}^2 Signaling in the Nucleus by Interfering with Functional Smad-DNA Complex Formation. Molecular and Cellular Biology, 2007, 27, 4488-4499.	2.3	220
72	Amotl2 is essential for cell movements in zebrafish embryo and regulates c-Src translocation. Development (Cambridge), 2007, 134, 979-988.	2.5	50

#	Article	IF	CITATIONS
73	A \hat{l}^2 -Catenin-Independent Dorsalization Pathway Activated by Axin/JNK Signaling and Antagonized by Aida. Developmental Cell, 2007, 13, 268-282.	7.0	50
74	Surfactant protein A promoter directs the expression of Cre recombinase in brain microvascular endothelial cells of transgenic mice. Matrix Biology, 2007, 26, 54-57.	3.6	18
75	Tob genes in development and homeostasis. Developmental Dynamics, 2007, 236, 913-921.	1.8	49
76	PPM1A Functions as a Smad Phosphatase to Terminate TGFÎ ² Signaling. Cell, 2006, 125, 915-928.	28.9	422
77	Two GC-rich boxes in huC promoter play distinct roles in controlling its neuronal specific expression in zebrafish embryos. Biochemical and Biophysical Research Communications, 2006, 342, 214-220.	2.1	22
78	Activation and roles of ALK4/ALK7-mediated maternal TGFÎ ² signals in zebrafish embryo. Biochemical and Biophysical Research Communications, 2006, 345, 694-703.	2.1	40
79	Tob1 Controls Dorsal Development of Zebrafish Embryos by Antagonizing Maternal \hat{l}^2 -Catenin Transcriptional Activity. Developmental Cell, 2006, 11, 225-238.	7.0	67
80	Sp5l is a mediator of Fgf signals in anteroposterior patterning of the neuroectoderm in zebrafish embryo. Developmental Dynamics, 2006, 235, 2999-3006.	1.8	8
81	The Role of Survivin in Angiogenesis during Zebrafish Embryonic Development Blood, 2006, 108, 1812-1812.	1.4	0
82	Sp1-like transcription factors are regulators of embryonic development in vertebrates. Development Growth and Differentiation, 2005, 47, 201-211.	1.5	114
83	Characterization and expression pattern of two zebrafishatf7 genes. Developmental Dynamics, 2005, 233, 1157-1162.	1.8	5
84	Zebrafish Dpr2 Inhibits Mesoderm Induction by Promoting Degradation of Nodal Receptors. Science, 2004, 306, 114-117.	12.6	124
85	Cloning and expression analysis of zebrafish tob1 gene. Development Genes and Evolution, 2004, 214, 309-11.	0.9	6
86	Generation of mutants with developmental defects in zebrafish by ENU mutagenesis. Science Bulletin, 2004, 49, 2154-2158.	1.7	3
87	fgf17b, a novel member of Fgf family, helps patterning zebrafish embryos. Developmental Biology, 2004, 271, 130-143.	2.0	58
88	Pur alpha and Sp8 as opposing regulators of neural gata2 expression. Developmental Biology, 2004, 275, 225-234.	2.0	22
89	An SP1-like transcription factor Spr2 acts downstream of Fgf signaling to mediate mesoderm induction. EMBO Journal, 2003, 22, 6078-6088.	7.8	40
90	Expression of zebrafish Lc3 synthase gene in embryonic lens requires hedgehog signaling. Developmental Dynamics, 2003, 228, 308-312.	1.8	3

#	Article	lF	CITATIONS
91	Somite-specific expression of a novel fibronectin variant FN3 is negatively regulated by SHH. Science Bulletin, 2002, 47, 1807-1811.	9.0	7
92	The expression of gbx-2 during zebrafish embryogenesis. Mechanisms of Development, 2002, 113, 107-110.	1.7	17
93	A novel zinc finger transcription factor resembles krox-20 in structure and in expression pattern in zebrafish. Mechanisms of Development, 2002, 114, 133-135.	1.7	6
94	Zebrafish sox9b is an early neural crest marker. Development Genes and Evolution, 2002, 212, 203-206.	0.9	64
95	Double-Stranded RNA Injection Produces Nonspecific Defects in Zebrafish. Developmental Biology, 2001, 229, 215-223.	2.0	130
96	The nuclear localization signal of zebrafish <i>terra</i> is located within the DM domain. FEBS Letters, 2001, 503, 25-29.	2.8	10
97	The zygotic expression of zebrafish trebf during embryogenesis is restricted to the embryonic shield and its derivatives. Development Genes and Evolution, 2001, 211, 445-448.	0.9	4
98	Characterization and expression pattern of poull 1, a novel class II POU gene in zebrafish. Science Bulletin, 2001, 46, 1523-1527.	1.7	8
99	Tissue-specific expression of GFP reporter gene in germline driven by GATA-2 promoter and enhancers in zebrafish. Science Bulletin, 2000, 45, 31-34.	1.7	5
100	Chapter 7 Transgenesis. Methods in Cell Biology, 1998, 60, 133-148.	1.1	41