Demetrios Gatziolis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10661908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shortcomings of the normalized difference vegetation index as an exposure metric. Nature Plants, 2022, 8, 617-622.	9.3	17
2	The natural environment, plant diversity, and adult asthma: A retrospective observational study using the CDC's 500 Cities Project Data. Health and Place, 2021, 67, 102494.	3.3	7
3	An empirical test of the biodiversity hypothesis: Exposure to plant diversity is associated with a reduced risk of childhood acute lymphoblastic leukemia. Science of the Total Environment, 2021, 768, 144627.	8.0	11
4	Small-scale distributions of polycyclic aromatic hydrocarbons in urban areas using geospatial modeling: A case study using the moss Orthotrichum lyellii in Portland, Oregon, U.S.A Atmospheric Environment, 2021, 256, 118433.	4.1	7
5	Exposure to atmospheric metals using moss bioindicators and neonatal health outcomes in Portland, Oregon. Environmental Pollution, 2021, 284, 117343.	7.5	9
6	Evaluation of pushbroom DAP relative to frame camera DAP and lidar for forest modeling. Remote Sensing of Environment, 2020, 237, 111535.	11.0	10
7	Use of Remote Sensing Data to Improve the Efficiency of National Forest Inventories: A Case Study from the United States National Forest Inventory. Forests, 2020, 11, 1364.	2.1	47
8	Reconstructing Aircraft Trajectories from Multi-Return Airborne Laser-Scanning Data. Remote Sensing, 2019, 11, 2258.	4.0	0
9	Association between exposure to the natural environment, rurality, and attention-deficit hyperactivity disorder in children in New Zealand: a linkage study. Lancet Planetary Health, The, 2019, 3, e226-e234.	11.4	60
10	The natural environment and birth outcomes: Comparting 3D exposure metrics derived from LiDAR to 2D metrics based on the normalized difference vegetation index. Health and Place, 2019, 57, 305-312.	3.3	19
11	Large Area Forest Yield Estimation with Pushbroom Digital Aerial Photogrammetry. Forests, 2019, 10, 397.	2.1	16
12	Using high-resolution residential greenspace measures in an urban environment to assess risks of allergy outcomes in children. Science of the Total Environment, 2019, 668, 760-767.	8.0	44
13	Relationship between exposure to the natural environment and recovery from hip or knee arthroplasty: a New Zealand retrospective cohort study. BMJ Open, 2019, 9, e029522.	1.9	13
14	Augmentation of Traditional Forest Inventory and Airborne Laser Scanning with Unmanned Aerial Systems and Photogrammetry for Forest Monitoring. Remote Sensing, 2018, 10, 1562.	4.0	39
15	Intercomparison of photogrammetry software for three-dimensional vegetation modelling. Royal Society Open Science, 2018, 5, 172192.	2.4	13
16	Vegetation diversity protects against childhood asthma: results from a large New Zealand birth cohort. Nature Plants, 2018, 4, 358-364.	9.3	89
17	Lidar and Multispectral Imagery Classifications of Balsam Fir Tree Status for Accurate Predictions of Merchantable Volume. Forests, 2017, 8, 253.	2.1	8
18	Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution. Science of the Total Environment. 2016. 559. 84-93.	8.0	43

#	Article	IF	CITATIONS
19	Efficient three-dimensional reconstruction of aquatic vegetation geometry: Estimating morphological parameters influencing hydrodynamic drag. Estuarine, Coastal and Shelf Science, 2016, 178, 77-85.	2.1	19
20	Embedded, real-time UAV control for improved, image-based 3D scene reconstruction. Measurement: Journal of the International Measurement Confederation, 2016, 81, 264-269.	5.0	34
21	Modeling Forest Aboveground Biomass and Volume Using Airborne LiDAR Metrics and Forest Inventory and Analysis Data in the Pacific Northwest. Remote Sensing, 2015, 7, 229-255.	4.0	65
22	3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles. PLoS ONE, 2015, 10, e0137765.	2.5	70
23	Is tree loss associated with cardiovascular-disease risk in the Women's Health Initiative? A natural experiment. Health and Place, 2015, 36, 1-7.	3.3	72
24	The Relationship Between Trees and Human Health. American Journal of Preventive Medicine, 2013, 44, 139-145.	3.0	325
25	Dynamic Range-based Intensity Normalization for Airborne, Discrete Return Lidar Data of Forest Canopies. Photogrammetric Engineering and Remote Sensing, 2011, 77, 251-259.	0.6	43