
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10660275/publications.pdf Version: 2024-02-01

Ιινόλ Τμδανν-Μενές

#	Article	IF	CITATIONS
1	3D Composite Assemblies of Microparticles and Nanofibers for Tailored Wettability and Controlled Drug Delivery. Macromolecular Materials and Engineering, 2017, 302, 1600458.	3.6	18
2	Engineered Bacillus pumilus laccase-like multi-copper oxidase for enhanced oxidation of the lignin model compound guaiacol. Protein Engineering, Design and Selection, 2017, 30, 449-453.	2.1	17
3	Affinity-Driven Immobilization of Proteins to Hematite Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 20432-20439.	8.0	9
4	Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Scientific Reports, 2015, 5, 10465.	3.3	97
5	Increased efficiency of <i>Campylobacter jejuni N</i> -oligosaccharyltransferase PglB by structure-guided engineering. Open Biology, 2015, 5, 140227.	3.6	59
6	TEMPO-Oxidized Nanofibrillated Cellulose as a High Density Carrier for Bioactive Molecules. Biomacromolecules, 2015, 16, 3640-3650.	5.4	84
7	Laccase Catalyzed Synthesis of Iodinated Phenolic Compounds with Antifungal Activity. PLoS ONE, 2014, 9, e89924.	2.5	52
8	Light Harvesting Proteins for Solar Fuel Generation in Bioengineered Photoelectrochemical Cells. Current Protein and Peptide Science, 2014, 15, 374-384.	1.4	40
9	Sortase A catalyzed reaction pathways: a comparative study with six SrtA variants. Catalysis Science and Technology, 2014, 4, 2946-2956.	4.1	35
10	Improved productivity of poly (4-hydroxybutyrate) (P4HB) in recombinant Escherichia coli using glycerol as the growth substrate with fed-batch culture. Microbial Cell Factories, 2014, 13, 131.	4.0	21
11	Tyrosinase-catalyzed site-specific immobilization of engineered C-phycocyanin to surface. Scientific Reports, 2014, 4, 5370.	3.3	26
12	Enzyme-catalyzed protein crosslinking. Applied Microbiology and Biotechnology, 2013, 97, 461-475.	3.6	233
13	Laccase versus Laccase-Like Multi-Copper Oxidase: A Comparative Study of Similar Enzymes with Diverse Substrate Spectra. PLoS ONE, 2013, 8, e65633.	2.5	177
14	Bacterial tyrosinases and their applications. Process Biochemistry, 2012, 47, 1749-1760.	3.7	89
15	Enzymatic cross-linking of gelatine with laccase and tyrosinase. Biocatalysis and Biotransformation, 2012, 30, 86-95.	2.0	40
16	Bacterial tyrosinases: old enzymes with new relevance to biotechnology. New Biotechnology, 2012, 29, 183-191.	4.4	109
17	Bacillus pumiluslaccase: a heat stable enzyme with a wide substrate spectrum. BMC Biotechnology, 2011, 11, 9.	3.3	170
18	Heme ladder, a direct molecular weight marker for immunoblot analysis. Analytical Biochemistry, 2011, 409, 213-219.	2.4	6

#	Article	IF	CITATIONS
19	Enatiomerically pure hydroxycarboxylic acids: current approaches and future perspectives. Applied Microbiology and Biotechnology, 2010, 87, 41-52.	3.6	96
20	Cross-linking and immobilisation of different proteins with recombinant Verrucomicrobium spinosum tyrosinase. Journal of Biotechnology, 2010, 150, 546-551.	3.8	31
21	Heme Transport and Incorporation into Proteins. , 2009, , 149-159.		3
22	Helix swapping leads to dimerization of the Nâ€ŧerminal domain of the <i>c</i> â€ŧype cytochrome maturation protein CcmH from <i>Escherichia coli</i> . FEBS Letters, 2008, 582, 2779-2786.	2.8	14
23	Avoidance of the cytochrome c biogenesis system by periplasmic CXXCH motifs. Biochemical Society Transactions, 2008, 36, 1124-1128.	3.4	6
24	Axial Coordination of Heme in Ferric CcmE Chaperone Characterized by EPR Spectroscopy. Biophysical Journal, 2007, 92, 1361-1373.	0.5	36
25	Loss of ATP hydrolysis activity by CcmAB results in loss of c-type cytochrome synthesis and incomplete processing of CcmE. FEBS Journal, 2007, 274, 2322-2332.	4.7	53
26	The membrane anchors of the heme chaperone CcmE and the periplasmic thioredoxin CcmG are functionally important. FEBS Letters, 2006, 580, 216-222.	2.8	5
27	A heme tag for in vivo synthesis of artificial cytochromes. Applied Microbiology and Biotechnology, 2005, 67, 234-239.	3.6	22
28	Staphylococcus aureus DsbA is a membrane-bound lipoprotein with thiol-disulfide oxidoreductase activity. Archives of Microbiology, 2005, 184, 117-128.	2.2	47
29	AtCCMH, an essential component of the c-type cytochrome maturation pathway in Arabidopsis mitochondria, interacts with apocytochrome c. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16113-16118.	7.1	93
30	Cytochrome c Maturation and the Physiological Role of c -Type Cytochromes in Vibrio cholerae. Journal of Bacteriology, 2005, 187, 5996-6004.	2.2	27
31	CcmD Is Involved in Complex Formation between CcmC and the Heme Chaperone CcmE during Cytochrome c Maturation. Journal of Biological Chemistry, 2005, 280, 236-243.	3.4	37
32	Biosynthesis of artificial microperoxidases by exploiting the secretion and cytochrome c maturation apparatuses of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12830-12835.	7.1	53
33	Dynamic Features of a Heme Delivery System for Cytochrome c Maturation. Journal of Biological Chemistry, 2003, 278, 52061-52070.	3.4	29
34	Biochemical and Mutational Characterization of the Heme Chaperone CcmE Reveals a Heme Binding Site. Journal of Bacteriology, 2003, 185, 175-183.	2.2	42
35	The C-Terminal Flexible Domain of the Heme Chaperone CcmE Is Important but Not Essential for Its Function. Journal of Bacteriology, 2003, 185, 3821-3827.	2.2	15
36	Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes. Advances in Microbial Physiology, 2002, 46, 257-318.	2.4	58

#	Article	IF	CITATIONS
37	A Bacterial Cytochrome c Heme Lyase. Journal of Biological Chemistry, 2002, 277, 7657-7663.	3.4	90
38	Structure of CcmG/DsbE at 1.14 Ã Resolution. Structure, 2002, 10, 973-979.	3.3	69
39	NMR Structure of the Heme Chaperone CcmE Reveals a Novel Functional Motif. Structure, 2002, 10, 1551-1557.	3.3	61
40	CCME, a Nuclear-encoded Heme-binding Protein Involved in Cytochrome c Maturation in Plant Mitochondria. Journal of Biological Chemistry, 2001, 276, 5491-5497.	3.4	53
41	Physical Interaction of CcmC with Heme and the Heme Chaperone CcmE during Cytochrome c Maturation. Journal of Biological Chemistry, 2001, 276, 32591-32596.	3.4	62
42	New insights into the role of CcmC, CcmD and CcmE in the haem delivery pathway during cytochrome c maturation by a complete mutational analysis of the conserved tryptophan-rich motif of CcmC. Molecular Microbiology, 2000, 37, 1379-1388.	2.5	63
43	Periplasmic protein thiol:disulfide oxidoreductases ofEscherichia coli. FEMS Microbiology Reviews, 2000, 24, 303-316.	8.6	121
44	Integrity of <i>thermus thermophilus</i> cytochrome c ₅₅₂ Synthesized by <i>escherichia coli</i> cells expressing the hostâ€specific cytochrome <i>c</i> maturation genes, <i>ccmABCDEFGH</i> : Biochemical, spectral, and structural characterization of the recombinant protein. Protein Science, 2000, 9, 2074-2084.	7.6	53
45	Haem-polypeptide interactions during cytochrome c maturation. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1459, 316-324.	1.0	76
46	The symbiotically essential <i>cbb</i> ₃ â€ŧype oxidase of <i>Bradyrhizobium japonicum</i> is a proton pump. FEBS Letters, 2000, 470, 7-10.	2.8	49
47	Heterologous expression of soluble fragments of cytochrome c552 acting as electron donor to the Paracoccus denitrificans cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1411, 114-120.	1.0	44
48	Overproduction of theBradyrhizobium japonicum c-Type Cytochrome Subunits of thecbb3Oxidase inEscherichia coli. Biochemical and Biophysical Research Communications, 1998, 251, 744-747.	2.1	386
49	How Replacements of the 12 Conserved Histidines of Subunit I Affect Assembly, Cofactor Binding, and Enzymatic Activity of the Bradyrhizobium japonicum cbb 3-type Oxidase. Journal of Biological Chemistry, 1998, 273, 6452-6459.	3.4	40
50	Characterization of the Bradyrhizobium japonicum CycY Protein, a Membrane-anchored Periplasmic Thioredoxin That May Play a Role as a Reductant in the Biogenesis of c-Type Cytochromes. Journal of Biological Chemistry, 1997, 272, 4467-4473.	3.4	58
51	Escherichia coliccmin-frame deletion mutants can produce periplasmic cytochromebbut not cytochromec. FEBS Letters, 1997, 410, 351-355.	2.8	44
52	Heme C incorporation into the c -type cytochromes FixO and FixP is essential for assembly of the Bradyrhizobium japonicum cbb 3 -type oxidase. FEBS Letters, 1997, 412, 75-78.	2.8	7
53	Translocation to the Periplasm and Signal Sequence Cleavage of Preapocytochrome c Depend on Sec and Lep, but not on the ccm gene products. FEBS Journal, 1997, 246, 794-799.	0.2	70
54	Biochemical and genetic characterization of the acetaldehyde dehydrogenase complex from Acetobacter europaeus. Archives of Microbiology, 1997, 168, 81-91.	2.2	45

#	Article	IF	CITATIONS
55	Histidine 131, not histidine 43, of theBradyrhizobium japonicumFixN protein is exposed towards the periplasm and essential for the function of thecbb3-type cytochrome oxidase. FEBS Letters, 1996, 394, 349-352.	2.8	14
56	Requirements for Maturation of Bradyrhizobium japonicum Cytochrome c550 in Escherichia coli. FEBS Journal, 1996, 235, 754-761.	0.2	44
57	Assembly and Function of the Cytochrome cbb Oxidase Subunits in Bradyrhizobium japonicum. Journal of Biological Chemistry, 1996, 271, 9114-9119.	3.4	98
58	The cycHJKL gene cluster plays an essential role in the biogenesis of c-type cytochromes in Bradyrhizobium japonicum. Molecular Genetics and Genomics, 1995, 247, 27-38.	2.4	72
59	Cytochrome c biogenesis in bacteria: a possible pathway begins to emerge. Molecular Microbiology, 1994, 12, 1-9.	2.5	98
60	The ccoNOQP gene cluster codes for a cb-type cytochrome oxidase that functions in aerobic respiration of Rhodobacter capsulatus. Molecular Microbiology, 1994, 14, 705-716.	2.5	83
61	Bacterial genes and proteins involved in the biogenesis of c-type cytochromes and terminal oxidases. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1187, 260-263.	1.0	17
62	Prokaryotic polyprotein precursors. FEBS Letters, 1992, 307, 62-65.	2.8	15
63	An unusual gene cluster for the cytochrome bc1 complex in Bradyrhizobium japonicum and its requirement for effective root nodule symbiosis. Cell, 1989, 57, 683-697.	28.9	131