Nikos Papakonstantinou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10659392/publications.pdf

Version: 2024-02-01

21 papers

522 citations ⁷⁵⁹²³³
12
h-index

19 g-index

22 all docs 22 docs citations 22 times ranked 866 citing authors

#	Article	IF	CITATIONS
1	The TÎ ⁺ p63/BCL2 axis represents a novel mechanism of clinical aggressiveness in chronic lymphocytic leukemia. Blood Advances, 2022, 6, 2646-2656.	5.2	1
2	Stem cell factor is implicated in microenvironmental interactions and cellular dynamics of chronic lymphocytic leukemia. Haematologica, 2021, 106, 692-700.	3.5	4
3	Control of PD-L1 expression in CLL-cells by stromal triggering of the Notch-c-Myc-EZH2 oncogenic signaling axis., 2021, 9, e001889.		15
4	Aspartic Aminopeptidase Is a Novel Biomarker of Aggressive Chronic Lymphocytic Leukemia. Cancers, 2020, 12, 1876.	3.7	3
5	EZH2 upregulates the PI3K/AKT pathway through IGF1R and MYC in clinically aggressive chronic lymphocytic leukaemia. Epigenetics, 2019, 14, 1125-1140.	2.7	24
6	Study of gene expressions' correlation structures in subgroups of Chronic Lymphocytic Leukemia Patients. Journal of Biomedical Informatics, 2019, 95, 103211.	4.3	2
7	Inhibition of EZH2 and immune signaling exerts synergistic antitumor effects in chronic lymphocytic leukemia. Blood Advances, 2019, 3, 1891-1896.	5 . 2	10
8	DNA methylation profiles in chronic lymphocytic leukemia patients treated with chemoimmunotherapy. Clinical Epigenetics, 2019, 11, 177.	4.1	15
9	Integrated epigenomic and transcriptomic analysis reveals <i>TP63</i> as a novel player in clinically aggressive chronic lymphocytic leukemia. International Journal of Cancer, 2019, 144, 2695-2706.	5.1	24
10	Dichotomous Toll-like receptor responses in chronic lymphocytic leukemia patients under ibrutinib treatment. Leukemia, 2019, 33, 1030-1051.	7.2	4
11	The inhibitory receptor toll interleukin-1R 8 (TIR8/IL-1R8/SIGIRR) is downregulated in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2017, 58, 2419-2425.	1.3	9
12	B Cell Anergy Modulated by TLR1/2 and the miR-17â^1/492 Cluster Underlies the Indolent Clinical Course of Chronic Lymphocytic Leukemia Stereotyped Subset #4. Journal of Immunology, 2016, 196, 4410-4417.	0.8	30
13	NF-κB activation in chronic lymphocytic leukemia: A point of convergence of external triggers and intrinsic lesions. Seminars in Cancer Biology, 2016, 39, 40-48.	9.6	60
14	The histone methyltransferase EZH2 as a novel prosurvival factor in clinically aggressive chronic lymphocytic leukemia. Oncotarget, 2016, 7, 35946-35959.	1.8	29
15	Excessive antigen reactivity may underlie the clinical aggressiveness of chronic lymphocytic leukemia stereotyped subset #8. Blood, 2015, 125, 3580-3587.	1.4	49
16	Heterogeneous Functional Effects of Concomitant B Cell Receptor and TLR Stimulation in Chronic Lymphocytic Leukemia with Mutated versus Unmutated Ig Genes. Journal of Immunology, 2014, 192, 4518-4524.	0.8	23
17	A Structural Equation Modeling Approach of the Toll-Like Receptor Signaling Pathway in Chronic Lymphocytic Leukemia. , 2013, , .		1
18	A key role for EZH2 in epigenetic silencing of HOX genes in mantle cell lymphoma. Epigenetics, 2013, 8, 1280-1288.	2.7	42

#	Article	IF	CITATIONS
19	Differential microRNA Profiles and Their Functional Implications in Different Immunogenetic Subsets of Chronic Lymphocytic Leukemia. Molecular Medicine, 2013, 19, 115-123.	4.4	46
20	Distinct Innate Immunity Pathways to Activation and Tolerance in Subgroups of Chronic Lymphocytic Leukemia with Distinct Immunoglobulin Receptors. Molecular Medicine, 2012, 18, 1281-1291.	4.4	58
21	Toll-like receptor signaling pathway in chronic lymphocytic leukemia: distinct gene expression profiles of potential pathogenic significance in specific subsets of patients. Haematologica, 2011, 96, 1644-1652.	3.5	73