
Guojin Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10656949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	YAP inhibits ERÎ \pm and ER+ breast cancer growth by disrupting a TEAD-ERÎ \pm signaling axis. Nature Communications, 2022, 13, .	12.8	22
2	LILRB3 supports acute myeloid leukemia development and regulates T-cell antitumor immune responses through the TRAF2–cFLIP–NF-κB signaling axis. Nature Cancer, 2021, 2, 1170-1184.	13.2	23
3	Antagonistic anti-LILRB1 monoclonal antibody regulates antitumor functions of natural killer cells. , 2020, 8, e000515.		27
4	Membrane protein CAR promotes hematopoietic regeneration upon stress. Haematologica, 2020, 106, haematol.2019.243998.	3.5	3
5	Installation of a cancer promoting WNT/SIX1 signaling axis by the oncofusion protein MLL-AF9. EBioMedicine, 2019, 39, 145-158.	6.1	13
6	SHP-1 regulates hematopoietic stem cell quiescence by coordinating TGF-β signaling. Journal of Experimental Medicine, 2018, 215, 1337-1347.	8.5	42
7	SMURF1 facilitates estrogen receptor É' signaling in breast cancer cells. Journal of Experimental and Clinical Cancer Research, 2018, 37, 24.	8.6	42
8	LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature, 2018, 562, 605-609.	27.8	172
9	CAMKs support development of acute myeloid leukemia. Journal of Hematology and Oncology, 2018, 11, 30.	17.0	26
10	A Novel Anti-LILRB4 CAR-T Cell for the Treatment of Monocytic AML. Molecular Therapy, 2018, 26, 2487-2495.	8.2	72
11	Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nature Medicine, 2017, 23, 79-90.	30.7	101
12	Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle, 2016, 15, 25-40.	2.6	150
13	Diseaseâ€causing mutations in KLHL3 impair its effect on WNK4 degradation. FEBS Letters, 2013, 587, 1717-1722.	2.8	63
14	Disease-causing R1185C mutation of WNK4 disrupts a regulatory mechanism involving calmodulin binding and SGK1 phosphorylation sites. American Journal of Physiology - Renal Physiology, 2013, 304, F8-F18.	2.7	22
15	Kelchâ€ŀike 3 (KLHL3) controls WNK4 ubiquitination and degradation. FASEB Journal, 2013, 27, 911.14.	0.5	0
16	Suppression of intestinal calcium entry channel TRPV6 by OCRL, a lipid phosphatase associated with Lowe syndrome and Dent disease. American Journal of Physiology - Cell Physiology, 2012, 302, C1479-C1491.	4.6	28
17	Disease-causing mutations in the acidic motif of WNK4 impair the sensitivity of WNK4 kinase to calcium ions. Biochemical and Biophysical Research Communications, 2012, 419, 293-298.	2.1	22
18	Effects of Exogenous Proteins Injection into the Bursa of Fabricius on Humoral Immunity in Neonatal Chickens. Journal of Poultry Science, 2012, 49, 124-129.	1.6	0

Guojin Wu

#	Article	IF	CITATIONS
19	WNK4 phosphorylates mouse thiazideâ€sensitive Naâ€Cl cotransporter NCC at threonine 48. FASEB Journal, 2012, 26, 867.38.	0.5	0
20	Concerted actions of NHERF2 and WNK4 in regulating TRPV5. Biochemical and Biophysical Research Communications, 2011, 404, 979-984.	2.1	11
21	The R1185C mutation of WNK4 alters its interaction with calmodulin and phosphorylation by SGK1. FASEB Journal, 2011, 25, 1038.24.	0.5	0
22	Down-regulation of Intestinal Apical Calcium Entry Channel TRPV6 by Ubiquitin E3 Ligase Nedd4-2. Journal of Biological Chemistry, 2010, 285, 36586-36596.	3.4	36
23	Rapid clearance of circulating protein by early chicken embryo blood cells. Journal of Experimental Biology, 2009, 212, 2176-2182.	1.7	5