Daniel J Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1065618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science, 2014, 345, 1369-1372.	12.6	1,083
2	Zika virus evolution and spread in the Americas. Nature, 2017, 546, 411-415.	27.8	323
3	Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone. Cell, 2015, 161, 1516-1526.	28.9	275
4	Phylogenetic analysis of SARS-CoV-2 in Boston highlights the impact of superspreading events. Science, 2021, 371, .	12.6	226
5	Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness. Science, 2022, 376, 1327-1332.	12.6	172
6	A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa. Science, 2021, 374, 423-431.	12.6	144
7	Genomic Analysis of Lassa Virus during an Increase in Cases in Nigeria in 2018. New England Journal of Medicine, 2018, 379, 1745-1753.	27.0	135
8	Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants. Nature Medicine, 2022, 28, 1083-1094.	30.7	127
9	Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time. Nature Communications, 2020, 11, 4131.	12.8	101
10	Capturing sequence diversity in metagenomes with comprehensive and scalable probe design. Nature Biotechnology, 2019, 37, 160-168.	17.5	96
11	Monitoring of Ebola Virus Makona Evolution through Establishment of Advanced Genomic Capability in Liberia. Emerging Infectious Diseases, 2015, 21, 1135-1143.	4.3	79
12	Evaluation of the Potential Impact of Ebola Virus Genomic Drift on the Efficacy of Sequence-Based Candidate Therapeutics. MBio, 2015, 6, .	4.1	62
13	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	3.3	49
14	Combining genomics and epidemiology to track mumps virus transmission in the United States. PLoS Biology, 2020, 18, e3000611.	5.6	37
15	An Outbreak of Ebola Virus Disease in the Lassa Fever Zone. Journal of Infectious Diseases, 2016, 214, S110-S121.	4.0	34
16	Future-proofing and maximizing the utility of metadata: The PHA4GE SARS-CoV-2 contextual data specification package. GigaScience, 2022, 11, .	6.4	18
17	SARS-CoV-2 Reinfection in a Liver Transplant Recipient. Annals of Internal Medicine, 2021, 174, 1178-1180.	3.9	10
18	The Origins and Future of Sentinel: An Early-Warning System for Pandemic Preemption and Response. Viruses, 2021, 13, 1605.	3.3	8

DANIEL J PARK

#	Article	IF	CITATIONS
19	Synthetic DNA spike-ins (SDSIs) enable sample tracking and detection of inter-sample contamination in SARS-CoV-2 sequencing workflows. Nature Microbiology, 2022, 7, 108-119.	13.3	6
20	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0
21	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0
22	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0
23	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0
24	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0
25	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0