
Katharina Schlacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1065550/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EXO5-DNA structure and BLM interactions direct DNA resection critical for ATR-dependent replication restart. Molecular Cell, 2021, 81, 2989-3006.e9.	9.7	26
2	APOBEC3A drives deaminase domain-independent chromosomal instability to promote pancreatic cancer metastasis. Nature Cancer, 2021, 2, 1338-1356.	13.2	35
3	MRE11-dependent instability in mitochondrial DNA fork protection activates a cGAS immune signaling pathway. Science Advances, 2021, 7, eabf9441.	10.3	19
4	Comprehensive Molecular Characterization Identifies Distinct Genomic and Immune Hallmarks of Renal Medullary Carcinoma. Cancer Cell, 2020, 37, 720-734.e13.	16.8	74
5	Detection and Quantitation of Acetylated Histones on Replicating DNA Using In Situ Proximity Ligation Assay and Click-It Chemistry. Methods in Molecular Biology, 2019, 1983, 29-45.	0.9	11
6	Sense and sensibility: ATM oxygen stress signaling manages brain cell energetics. Journal of Cell Biology, 2019, 218, 732-734.	5.2	1
7	GnRH-R–Targeted Lytic Peptide Sensitizes <i>BRCA</i> Wild-type Ovarian Cancer to PARP Inhibition. Molecular Cancer Therapeutics, 2019, 18, 969-979.	4.1	12
8	SIRF: A Single-cell Assay for in situ Protein Interaction with Nascent DNA Replication Forks. Bio-protocol, 2019, 9, e3377.	0.4	6
9	SIRF: Quantitative in situ analysis of protein interactions at DNA replication forks. Journal of Cell Biology, 2018, 217, 1521-1536.	5.2	79
10	<i>CDKN2A/p16</i> Deletion in Head and Neck Cancer Cells Is Associated with CDK2 Activation, Replication Stress, and Vulnerability to CHK1 Inhibition. Cancer Research, 2018, 78, 781-797.	0.9	37
11	A new road to cancer-drug resistance. Nature, 2018, 563, 478-480.	27.8	10
12	p53 orchestrates DNA replication restart homeostasis by suppressing mutagenic RAD52 and POLÎ, pathways. ELife, 2018, 7, .	6.0	78
13	PARPi focus the spotlight on replication fork protection in cancer. Nature Cell Biology, 2017, 19, 1309-1310.	10.3	20
14	Constitutive role of the Fanconi anemia D2 gene in the replication stress response. Journal of Biological Chemistry, 2017, 292, 20184-20195.	3.4	25
15	Abro1 maintains genome stability and limits replication stress by protecting replication fork stability. Genes and Development, 2017, 31, 1469-1482.	5.9	54
16	A Selective Small Molecule DNA2 Inhibitor for Sensitization of Human Cancer Cells to Chemotherapy. EBioMedicine, 2016, 6, 73-86.	6.1	68
17	Interaction of Chk1 with Treslin Negatively Regulates the Initiation of Chromosomal DNA Replication. Molecular Cell, 2015, 57, 492-505.	9.7	84
18	A Distinct Replication Fork Protection Pathway Connects Fanconi Anemia Tumor Suppressors to RAD51-BRCA1/2. Cancer Cell. 2012. 22. 106-116.	16.8	753

KATHARINA SCHLACHER

#	Article	lF	CITATIONS
19	Double-Strand Break Repair-Independent Role for BRCA2 in Blocking Stalled Replication Fork Degradation by MRE11. Cell, 2011, 145, 529-542.	28.9	1,036
20	Double-Strand Break Repair-Independent Role for BRCA2 in Blocking Stalled Replication Fork Degradation by MRE11. Cell, 2011, 145, 993.	28.9	4
21	Plasticity of BRCA2 Function in Homologous Recombination: Genetic Interactions of the PALB2 and DNA Binding Domains. PLoS Genetics, 2011, 7, e1002409.	3.5	71
22	Lessons from 50 years of SOS DNA-damage-induced mutagenesis. Nature Reviews Molecular Cell Biology, 2007, 8, 587-594.	37.0	95
23	RecA acts in trans to allow replication of damaged DNA by DNA polymerase V. Nature, 2006, 442, 883-887.	27.8	97
24	Roles of DNA Polymerase V and RecA Protein in SOS Damage-Induced Mutation. Chemical Reviews, 2006, 106, 406-419.	47.7	68
25	Purification and Characterization of Escherichia coli DNA Polymerase V. Methods in Enzymology, 2006, 408, 378-390.	1.0	4
26	DNA Polymerase V and RecA Protein, a Minimal Mutasome. Molecular Cell, 2005, 17, 561-572.	9.7	98