Patrick Wagnon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10654134/publications.pdf

Version: 2024-02-01

41 papers 4,114 citations

218677 26 h-index 42 g-index

43 all docs 43 docs citations

times ranked

43

2801 citing authors

#	Article	IF	CITATIONS
1	A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience, 2017, 10, 668-673.	12.9	755
2	Climate change and tropical Andean glaciers: Past, present and future. Earth-Science Reviews, 2008, 89, 79-96.	9.1	552
3	Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nature Geoscience, 2019, 12, 22-27.	12.9	256
4	Review of the status and mass changes of Himalayan-Karakoram glaciers. Journal of Glaciology, 2018, 64, 61-74.	2.2	233
5	Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. Journal of Glaciology, 2007, 53, 603-611.	2.2	220
6	Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, $16 \hat{A}^{\circ}$ S. Journal of Geophysical Research, 2003, 108, .	3.3	189
7	From balance to imbalance: a shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India. Journal of Glaciology, 2012, 58, 315-324.	2.2	170
8	Annual cycle of energy balance of Zongo Glacier, Cordillera Real, Bolivia. Journal of Geophysical Research, 1999, 104, 3907-3923.	3.3	139
9	Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969. Annals of Glaciology, 2014, 55, 69-80.	1.4	126
10	One-year measurements of surface heat budget on the ablation zone of Antizana Glacier 15, Ecuadorian Andes. Journal of Geophysical Research, 2004, 109, .	3.3	118
11	Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal. Cryosphere, 2016, 10, 1845-1858.	3.9	118
12	Energy balance and runoff seasonality of a Bolivian glacier. Global and Planetary Change, 1999, 22, 49-58.	3.5	108
13	Glaciers of the outer and inner tropics: A different behaviour but a common response to climatic forcing. Geophysical Research Letters, 2004, 31, .	4.0	105
14	Atmospheric controls of the heat balance of Zongo Glacier (16 \hat{A}° S, Bolivia). Journal of Geophysical Research, 2005, 110, .	3.3	101
15	Ice cliff contribution to the tongue-wide ablation of ChangriÂNup Glacier, Nepal, central Himalaya. Cryosphere, 2018, 12, 3439-3457.	3.9	96
16	Irregular tropical glacier retreat over the Holocene epoch driven by progressive warming. Nature, 2011, 474, 196-199.	27.8	80
17	Wintertime highâ€altitude surface energy balance of a Bolivian glacier, Illimani, 6340 m above sea level. Journal of Geophysical Research, 2003, 108, .	3.3	74
18	A physically based model of the year-round surface energy and mass balance of debris-covered glaciers. Journal of Glaciology, 2013, 59, 327-344.	2,2	71

#	Article	IF	CITATIONS
19	Quantifying volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and aerial photogrammetry. Journal of Glaciology, 2016, 62, 684-695.	2.2	71
20	Glacier ablation and temperature indexed melt models in the Nepalese Himalaya. Scientific Reports, 2019, 9, 5264.	3 . 3	52
21	Contrasted surface mass balances of debris-free glaciers observed between the southern and the inner parts of the Everest region (2007–15). Journal of Glaciology, 2017, 63, 637-651.	2.2	49
22	A physically based 3â€D model of ice cliff evolution over debrisâ€covered glaciers. Journal of Geophysical Research F: Earth Surface, 2016, 121, 2471-2493.	2.8	47
23	Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest region, Nepal Himalaya. Cryosphere, 2018, 12, 3891-3905.	3.9	46
24	Melting of Snow Cover in a Tropical Mountain Environment in Bolivia: Processes and Modeling. Journal of Hydrometeorology, 2007, 8, 922-937.	1.9	44
25	Evidence of groundwater flow on Antizana ice-covered volcano, Ecuador / Mise en évidence d'écoulements souterrains sur le volcan englacé Antizana, Equateur. Hydrological Sciences Journal, 2008, 53, 278-291.	2.6	42
26	Water budget on the Dudh Koshi River (Nepal): Uncertainties on precipitation. Journal of Hydrology, 2015, 531, 850-862.	5 . 4	31
27	Reanalysing the 2007–19 glaciological mass-balance series of Mera Glacier, Nepal, Central Himalaya, using geodetic mass balance. Journal of Glaciology, 2021, 67, 117-125.	2.2	26
28	Quantification of different flow components in a high-altitude glacierized catchment (Dudh Koshi,) Tj ETQq0 0	0 rgBT/Ove	erlock 10 Tf 50 25
29	Turbulence Characteristics in the Atmospheric Surface Layer for Different Wind Regimes over the Tropical Zongo Glacier (Bolivia, \$\$16^circ \$\$ 16 â^ S). Boundary-Layer Meteorology, 2015, 154, 471-495.	2.3	23
30	Precipitation Characteristics and Moisture Source Regions on Mt. Everest in the Khumbu, Nepal. One Earth, 2020, 3, 594-607.	6.8	23
31	Glacier fluctuations in the Alps and in the tropical Andes. Comptes Rendus - Geoscience, 2005, 337, 97-106.	1.2	19
32	Understanding monsoon controls on the energy and mass balance of glaciers in the Central and Eastern Himalaya. Cryosphere, 2022, 16, 1631-1652.	3.9	17
33	Incorporating moisture content in surface energy balance modeling of a debris-covered glacier. Cryosphere, 2020, 14, 1555-1577.	3.9	15
34	Seasonally stable temperature gradients through supraglacial debris in the Everest region of Nepal, Central Himalaya. Journal of Glaciology, 2021, 67, 170-181.	2.2	14
35	Measurements, models and drivers of incoming longwave radiation in the Himalaya. International Journal of Climatology, 2020, 40, 942-956.	3 . 5	10

#	Article	IF	CITATIONS
37	Variations in nearâ€surface debris temperature through the summer monsoon on Khumbu Glacier, Nepal Himalaya. Earth Surface Processes and Landforms, 2018, 43, 2698-2714.	2.5	7
38	Weather on <scp>Mount Everest</scp> during the 2019 summer <scp>monsoon</scp> . Weather, 2021, 76, 205-207.	0.7	6
39	Detecting supraglacial debris thickness with GPR under suboptimal conditions. Journal of Glaciology, 2021, 67, 1108-1120.	2.2	4
40	Direct observations of a Mt Everest snowstorm from the world's highest surfaceâ€based radar observations. Weather, 2021, 76, 57-59.	0.7	3
41	Processing of VENµS Images of High Mountains: A Case Study for Cryospheric and Hydro-Climatic Applications in the Everest Region (Nepal). Remote Sensing, 2022, 14, 1098.	4.0	1