Kailash Chandra Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1065409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon Nanomaterials for Wastewater Treatment. ChemBioEng Reviews, 2021, 8, 463-489.	4.4	22
2	A comparative study on vulcanization behavior of acrylonitrile-butadiene rubber reinforced with graphene oxide and reduced graphene oxide as fillers. Polymer Testing, 2019, 76, 127-137.	4.8	40
3	Bioactive Antibacterial Modification of Orthodontic Microimplants Using Chitosan Biopolymer. Macromolecular Research, 2019, 27, 504-510.	2.4	15
4	Osteoblast behaviours on nanorod hydroxyapatite-grafted glass surfaces. Biomaterials Research, 2019, 23, 28.	6.9	5
5	Poly(vinylbenzyl chloride- <i>co</i> -divinyl benzene) polyHIPE monolith-supported <i>o</i> -hydroxynaphthaldehyde propylenediamine Schiff base ligand complex of copper(<scp>ii</scp>) ions as a catalyst for the epoxidation of cyclohexene. RSC Advances, 2019, 9, 30823-30834.	3.6	7
6	Graphene-reinforced elastomeric nanocomposites: A review. Polymer Testing, 2018, 68, 160-184.	4.8	75
7	Enhanced Tissue Compatibility of Polyetheretherketone Disks by Dopamine-Mediated Protein Immobilization. Macromolecular Research, 2018, 26, 128-138.	2.4	26
8	In vitro Dual Detection of GNPs Conjugated Rabbit IgG Using Anti-IgG Anchored Calcein Green Fluorescent LC Microdroplets. IEEE Sensors Journal, 2018, , 1-1.	4.7	1
9	In vitro detection of allergen sensitized basophils by HSA-DNP antigen-anchored liquid crystal microdroplets. Analytical Biochemistry, 2018, 558, 1-11.	2.4	5
10	Hydroxyapatite Nanorod-Modified Sand Blasted Titanium Disk for Endosseous Dental Implant Applications. Tissue Engineering and Regenerative Medicine, 2018, 15, 601-614.	3.7	16
11	Slide cover glass immobilized liquid crystal microdroplets for sensitive detection of an IgG antigen. RSC Advances, 2017, 7, 37675-37688.	3.6	16
12	Lamination of microfibrous PLGA fabric by electrospinning a layer of collagen-hydroxyapatite composite nanofibers for bone tissue engineering. Biomaterials Research, 2017, 21, 11.	6.9	29
13	In vitro detection of human breast cancer cells (SK-BR3) using herceptin-conjugated liquid crystal microdroplets as a sensing platform. Biomaterials Science, 2016, 4, 1473-1484.	5.4	7
14	Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering. Nanoscale Research Letters, 2016, 11, 323.	5.7	70
15	Anti-IgG-anchored liquid crystal microdroplets for label free detection of IgG. Journal of Materials Chemistry B, 2016, 4, 704-715.	5.8	30
16	Antibacterial Activity and Cytocompatibility of PLGA/CuO Hybrid Nanofiber Scaffolds Prepared by Electrospinning. Journal of Nanomaterials, 2015, 2015, 1-10.	2.7	55
17	The role of ligand–receptor interactions in visual detection of HepG2 cells using a liquid crystal microdroplet-based biosensor. Journal of Materials Chemistry B, 2015, 3, 8659-8669.	5.8	20
18	ATRP graft copolymerization of poly(N-isopropylacrylamide-co-acrylic acid) on multiwalled carbon nanotubes. Macromolecular Research, 2014, 22, 948-957.	2.4	3

Kailash Chandra Gupta

#	Article	IF	CITATIONS
19	Nanofibrous scaffolds in biomedical applications. Biomaterials Research, 2014, 18, 5.	6.9	124
20	Morphological Effects of HA on the Cell Compatibility of Electrospun HA/PLGA Composite Nanofiber Scaffolds. BioMed Research International, 2014, 2014, 1-11.	1.9	62
21	Folate Ligand Anchored Liquid Crystal Microdroplets Emulsion for <i>in Vitro</i> Detection of KB Cancer Cells. Langmuir, 2014, 30, 10668-10677.	3.5	57
22	PLGA/nHA hybrid nanofiber scaffold as a nanocargo carrier of insulin for accelerating bone tissue regeneration. Nanoscale Research Letters, 2014, 9, 314.	5.7	60
23	Polymer-supported Schiff base complexes in oxidation reactions. Coordination Chemistry Reviews, 2009, 253, 1926-1946.	18.8	346
24	Catalytic activity of polymer anchored N,N′-bis (o-hydroxy acetophenone) ethylene diamine Schiff base complexes of Fe(III), Cu(II) and Zn(II) ions in oxidation of phenol. Reactive and Functional Polymers, 2008, 68, 12-26.	4.1	46
25	Catalytic activities of Schiff base transition metal complexes. Coordination Chemistry Reviews, 2008, 252, 1420-1450.	18.8	1,260
26	Glutaraldehyde cross-linked chitosan microspheres for controlled release of centchroman. Carbohydrate Research, 2007, 342, 2244-2252.	2.3	91
27	Polymer anchored Schiff base complexes of transition metal ions and their catalytic activities in oxidation of phenol. Journal of Molecular Catalysis A, 2007, 272, 64-74.	4.8	78
28	Preparation and characterization of sodium hexameta phosphate cross-linked chitosan microspheres for controlled and sustained delivery of centchroman. International Journal of Biological Macromolecules, 2006, 38, 272-283.	7.5	39
29	Ceric(IV) ion-induced graft copolymerization of acrylamide and ethyl acrylate onto cellulose. Polymer International, 2006, 55, 139-150.	3.1	21
30	Effects of degree of deacetylation and cross-linking on physical characteristics, swelling and release behavior of chitosan microspheres. Carbohydrate Polymers, 2006, 66, 43-54.	10.2	136
31	Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman. Carbohydrate Research, 2006, 341, 744-756.	2.3	144
32	Graft copolymerization of acrylamide onto cellulose in presence of comonomer using ceric ammonium nitrate as initiator. Journal of Applied Polymer Science, 2006, 101, 2546-2558.	2.6	21
33	Synthesis of polymer anchored N,N′-bis(3-allyl salicylidene)o-phenylenediamine cobalt(II) Schiff base complex and its catalytic activity for decomposition of hydrogen peroxide. Journal of Molecular Catalysis A, 2003, 202, 253-268.	4.8	67
34	Temperature-Responsive Cellulose by Ceric(IV) Ion-Initiated Graft Copolymerization of N-Isopropylacrylamide. Biomacromolecules, 2003, 4, 758-765.	5.4	135
35	Graft Copolymerization of Ethyl Acrylate onto Cellulose Using Ceric Ammonium Nitrate as Initiator in Aqueous Medium. Biomacromolecules, 2002, 3, 1087-1094.	5.4	74
36	Graft copolymerization of acrylamide-methylacrylate comonomers onto cellulose using ceric ammonium nitrate. Journal of Applied Polymer Science, 2002, 86, 2631-2642.	2.6	39

#	Article	IF	CITATIONS
37	Lead (II) ion selective electrodes based on diphenylmethyl-N-phenylhydroxamic acid ionophore in cyanocopolymer matrix. IEEE Sensors Journal, 2001, 1, 275-282.	4.7	8
38	Graft Copolymerization of Acrylonitrile and Ethyl Methacrylate Comonomers on Cellulose Using Ceric Ions. Biomacromolecules, 2001, 2, 239-247.	5.4	86
39	Studies on semi-interpenetrating polymer network beads of chitosan-poly(ethylene glycol) for the controlled release of drugs. Journal of Applied Polymer Science, 2001, 80, 639-649.	2.6	38
40	Co(III) acetylacetonate-complex-initiated grafting ofN-vinyl pyrrolidone on cellulose in aqueous media. Journal of Applied Polymer Science, 2001, 81, 2286-2296.	2.6	19
41	Effect of concentration of ion exchanger, plasticizer and molecular weight of cyanocopolymers on selectivity and sensitivity of Cu(II) ion selective electrodes. Analytica Chimica Acta, 2001, 437, 199-216.	5.4	49
42	pH dependent hydrolysis and drug release behavior of chitosan/poly(ethylene glycol) polymer network microspheres. Journal of Materials Science: Materials in Medicine, 2001, 12, 753-759.	3.6	64
43	Studies on semiâ€interpenetrating polymer network beads of chitosan–poly(ethylene glycol) for the controlled release of drugs. Journal of Applied Polymer Science, 2001, 80, 639-649.	2.6	1
44	CERIC ION INITIATED GRAFTING ON CELLULOSE FROM BINARY MIXTURE OF ACRYLONITRILE AND METHYLACRYLATE. Journal of Macromolecular Science - Pure and Applied Chemistry, 2000, 37, 447-468.	2.2	5
45	Preparation, characterization and release profiles of pH-sensitive chitosan beads. Polymer International, 2000, 49, 141-146.	3.1	73
46	Semi-interpenetrating polymer network beads of crosslinked chitosan-glycine for controlled release of chlorphenramine maleate. Journal of Applied Polymer Science, 2000, 76, 672-683.	2.6	64
47	Grafting ofN,N′-methylenebisacrylamide onto cellulose using Co(III)-acetylacetonate complex in aqueous medium. Journal of Applied Polymer Science, 2000, 76, 906-912.	2.6	16
48	Cadmium Ion-Selective Electrode Based on Cyanocopolymer. Electroanalysis, 2000, 12, 1408-1413.	2.9	14
49	Drug release behavior of beads and microgranules of chitosan. Biomaterials, 2000, 21, 1115-1119.	11.4	190
50	Performance evaluation of copper ion selective electrode based on cyanocopolymers. Sensors and Actuators B: Chemical, 2000, 62, 171-176.	7.8	32
51	An Overview on Chitin and Chitosan Applications with an Emphasis on Controlled Drug Release Formulations. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2000, 40, 273-308.	2.2	54
52	Effect of concentration of ion exchanger, plasticizer and molecular weight of cyanocopolymers on selectivity and sensitivity of Cd(II) ion selective electrode. Talanta, 2000, 52, 1087-1103.	5.5	33
53	STRUCTURAL CHANGES AND RELEASE CHARACTERISTICS OF CROSSLINKED CHITOSAN BEADS IN RESPONSE TO SOLUTION pH. Journal of Macromolecular Science - Pure and Applied Chemistry, 1999, 36, 827-841.	2.2	19
54	Synthesis and evaluation of aromatic polyamide membranes for desalination in reverse-osmosis technique. Journal of Applied Polymer Science, 1997, 66, 643-653.	2.6	24

#	Article	IF	CITATIONS
55	Radical Polymerization of <i>N,N</i> ″-Methylenebisacrylamide by Peroxidiphosphate-Ag ⁺ Redox System: A Kinetic Study. Journal of Macromolecular Science - Pure and Applied Chemistry, 1994, 31, 805-816.	2.2	0
56	Kinetics of radical polymerization of N-vinylpyrrolidone by peroxidiphosphate–Ag system. Journal of Applied Polymer Science, 1994, 53, 71-78.	2.6	10
57	Polymerization of Methacrylamide Initiated by Potassium Permanganate/Glycollic Acid Redox System. Polymer Journal, 1987, 19, 357-362.	2.7	2
58	Cerium (IV)-2-chloroethanol redox-pair initiated polymerization of acrylamide in aqueous medium. Journal of Polymer Science Part A, 1986, 24, 767-775.	2.3	18
59	Kinetic study of Ru(VI)-catalyzed oxidation of cyclic alcohols by hexacyanoferrate(III) in aqueous alkaline medium. International Journal of Chemical Kinetics, 1984, 16, 195-204.	1.6	14
60	Aqueous polymerization of methacrylamide initiated by potassiumpersulfate-L-cystein hydrochloride redox system. Colloid and Polymer Science, 1984, 262, 677-682.	2.1	13