
Hiroshi Ishiguro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10651138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Adversarial Training Based Speech Emotion Classifier With Isolated Gaussian Regularization. IEEE Transactions on Affective Computing, 2023, 14, 2361-2374.	8.3	1
2	Brief Report: The Effectiveness of Hugging a Huggable Device Before Having a Conversation with an Unfamiliar Person for Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 2022, 52, 3294-3303.	2.7	5
3	Development of â€~ibuki' an electrically actuated childlike android with mobility and its potential in the future society. Robotica, 2022, 40, 933-950.	1.9	11
4	A Preliminary Study on Realizing Human–Robot Mental Comforting Dialogue via Sharing Experience Emotionally. Sensors, 2022, 22, 991.	3.8	5
5	Identifying Personality Dimensions for Engineering Robot Personalities in Significant Quantities with Small User Groups. Robotics, 2022, 11, 28.	3.5	5
6	Adjustable whole-body dynamics for adaptive locomotion: the influence of upper body movements and its interactions with the lower body parts on the stable locomotion of a simple bipedal robot. Robotica, 2022, 40, 3340-3354.	1.9	1
7	Evaluation of a Daily Interactive Chatbot That Exchanges Information about Others through Long-Term Use in a Group of Friends. Transactions of the Japanese Society for Artificial Intelligence, 2022, 37, IDS-I_1-14.	0.1	2
8	Android as a Receptionist in a Shopping Mall Using Inverse Reinforcement Learning. IEEE Robotics and Automation Letters, 2022, 7, 7091-7098.	5.1	3
9	Robotic question support system to reduce hesitation for <scp>faceâ€ŧoâ€face</scp> questions in lectures. Journal of Computer Assisted Learning, 2021, 37, 621-631.	5.1	3
10	Active Participation in Lectures via a Collaboratively Controlled Robot. International Journal of Social Robotics, 2021, 13, 587-598.	4.6	4
11	Sharing Experiences to Help a Robot Present Its Mind and Sociability. International Journal of Social Robotics, 2021, 13, 341-352.	4.6	20
12	Modeling the Timing and Duration of Grip Behavior to Express Emotions for a Social Robot. IEEE Robotics and Automation Letters, 2021, 6, 159-166.	5.1	6
13	Perception of Emotional Expression of Mobile Humanoid Robot Using Gait-Induced Upper Body Motion. IEEE Access, 2021, 9, 124793-124804.	4.2	3
14	The Neighbor in My Left Hand: Development and Evaluation of an Integrative Agent System With Two Different Devices. IEEE Access, 2021, 9, 98317-98326.	4.2	0
15	Android Science and Engineering. , 2021, , 1-6.		Ο
16	Modeling the Conditional Distribution of Co-Speech Upper Body Gesture Jointly Using Conditional-GAN and Unrolled-GAN. Electronics (Switzerland), 2021, 10, 228.	3.1	18
17	3D skeletal movement-enhanced emotion recognition networks. APSIPA Transactions on Signal and Information Processing, 2021, 10, .	3.3	1
18	Use of a tele-operated robot to increase sociability in individuals with autism spectrum disorder who display Hikikomori. Asian Journal of Psychiatry, 2021, 57, 102588.	2.0	5

#	Article	IF	CITATIONS
19	Estimation of Dementia Severity Using SVM based on Patient's Engagement Levels in Conversation. , 2021, , .		Ο
20	The Effects of Physically Embodied Multiple Conversation Robots on the Elderly. Frontiers in Robotics and AI, 2021, 8, 633045.	3.2	8
21	Response Probability Distribution Acquisition for Autonomous Dialogue Generation. , 2021, , .		0
22	Teleoperated Robot Sells Toothbrush in a Shopping Mall: A Field Study. , 2021, , .		17
23	MAEC: Multi-Instance Learning with an Adversarial Auto-Encoder-Based Classifier for Speech Emotion Recognition. , 2021, , .		6
24	Using Multiple Robots to Increase Suggestion Persuasiveness in Public Space. Applied Sciences (Switzerland), 2021, 11, 6080.	2.5	4
25	A huggable device can reduce the stress of calling an unfamiliar person on the phone for individuals with ASD. PLoS ONE, 2021, 16, e0254675.	2.5	3
26	Effect of the projection of robot's talk information on the perception of communicating human. Advanced Robotics, 2021, 35, 1209-1222.	1.8	4
27	Exploring Possibilities of Social Robot's Interactive Services in the Case of a Hotel Room. , 2021, , .		3
28	An interactive response strategy involving a robot avatar in a video conference system for reducing the stress of response time management in communication. , 2021, , .		3
29	Can an android's posture and movement discriminate against the ambiguous emotion perceived from its facial expressions?. PLoS ONE, 2021, 16, e0254905.	2.5	1
30	Double-meaning agreements by two robots to conceal incoherent agreements to user's opinions. Advanced Robotics, 2021, 35, 1145-1155.	1.8	7
31	Using an Android Robot to Improve Social Connectedness by Sharing Recent Experiences of Group Members in Human-Robot Conversations. IEEE Robotics and Automation Letters, 2021, 6, 6670-6677.	5.1	10
32	Advocating Attitudinal Change Through Android Robot's Intention-Based Expressive Behaviors: Toward WHO COVID-19 Guidelines Adherence. IEEE Robotics and Automation Letters, 2021, 6, 6521-6528.	5.1	4
33	An End-to-end Multitask Learning Model to Improve Speech Emotion Recognition. , 2021, , .		4
34	A Model of Online Temporal-Spatial Integration for Immediacy and Overrule in Discourse Comprehension. Neurobiology of Language (Cambridge, Mass), 2021, 2, 83-105.	3.1	6
35	Skeleton-Based Emotion Recognition Based on Two-Stream Self-Attention Enhanced Spatial-Temporal Graph Convolutional Network. Sensors, 2021, 21, 205.	3.8	16
36	Android Printing: Towards On-Demand Android Development Employing Multi-Material 3-D Printer. , 2021, , .		1

#	Article	IF	CITATIONS
37	Implementation and Evaluation of a Grip Behavior Model to Express Emotions for an Android Robot. Frontiers in Robotics and Al, 2021, 8, 755150.	3.2	3
38	Communication Apprehension and Eye Contact Anxiety in Video Conferences Involving Teleoperated Robot Avatars: A Subjective Evaluation Study. Frontiers in Robotics and Al, 2021, 8, 758177.	3.2	6
39	Enhancing Sense of Attention from a Communication Robot by Drawing the User's Face on Its Thought Bubble in the Video Conferencing System. , 2021, , .		1
40	Analysis of Role-Based Gaze Behaviors and Gaze Aversions, and Implementation of Robot's Gaze Control for Multi-party Dialogue. , 2021, , .		10
41	The Effectiveness of Self-Recommending Agents in Advancing Purchase Behavior Steps in Retail Marketing. , 2021, , .		4
42	Cyberbullying Mitigation by a Proxy Persuasion of a Chat Member Hijacked by a Chatbot. , 2021, , .		2
43	Expression of Robot's Emotion and Intention Utilizing Physical Positioning in Conversation. , 2021, , .		1
44	Probabilistic Human-like Gesture Synthesis from Speech using GRU-based WGAN. , 2021, , .		12
45	Group-Based Online Job Interview Training Program Using Virtual Robot for Individuals With Autism Spectrum Disorders. Frontiers in Psychiatry, 2021, 12, 704564.	2.6	3
46	Local vs. Avatar Robot: Performance and Perceived Workload of Service Encounters in Public Space. Frontiers in Robotics and Al, 2021, 8, 778753.	3.2	12
47	Infants' perceptions of cooperation between a human and robot. Infant and Child Development, 2020, 29, e2161.	1.5	1
48	Rhythmic Synchrony with Artificial Agents and Its Effects on Frequency of Visual Illusions Seen in White Noise. Multimodal Technologies and Interaction, 2020, 4, 62.	2.5	1
49	A Robot Is Not Worth Another: Exploring Children's Mental State Attribution to Different Humanoid Robots. Frontiers in Psychology, 2020, 11, 2011.	2.1	45
50	Robot-on-Robot Gossiping to Improve Sense of Human-Robot Conversation. , 2020, , .		6
51	Japanese Young Women Did not Discriminate between Robots and Humans as Listeners for Their Self-Disclosure -Pilot Study Multimodal Technologies and Interaction, 2020, 4, 35.	2.5	9
52	Acceptance of a minimal design of a human infant for facilitating affective interaction with older adults: A case study toward interactive doll therapy. , 2020, , .		1
53	Multiple-Robot Mediated Discussion System to support group discussion *. , 2020, , .		2
54	Optimal robot for intervention for individuals with autism spectrum disorders. Psychiatry and Clinical Neurosciences, 2020, 74, 581-586.	1.8	44

#	Article	IF	CITATIONS
55	Human interaction behavior modeling using Generative Adversarial Networks. Neural Networks, 2020, 132, 521-531.	5.9	11
56	Analysis of body gestures in anger expression and evaluation in android robot. Advanced Robotics, 2020, 34, 1581-1590.	1.8	4
57	Mediated hugs modulate impressions of Hearsay information. Advanced Robotics, 2020, 34, 781-788.	1.8	3
58	SeMemNN: A Semantic Matrix-Based Memory Neural Network for Text Classification. , 2020, , .		3
59	Can a humanoid robot continue to draw attention in an office environment?. Advanced Robotics, 2020, 34, 931-946.	1.8	11
60	Twin-Robot Dialogue System with Robustness against Speech Recognition Failure in Human-Robot Dialogue with Elderly People. Applied Sciences (Switzerland), 2020, 10, 1522.	2.5	24
61	Understanding a public environment via continuous robot observations. Robotics and Autonomous Systems, 2020, 126, 103443.	5.1	6
62	Enhancing Communication Skills of Individuals With Autism Spectrum Disorders While Maintaining Social Distancing Using Two Tele-Operated Robots. Frontiers in Psychiatry, 2020, 11, 598688.	2.6	10
63	Autonomous Dialogue Technologies in Symbiotic Human-robot Interaction. , 2020, , .		Ο
64	Mind The Voice!: Effect of Robot Voice Pitch, Robot Voice Gender, and User Gender on User Perception of Teleoperated Robots. , 2020, , .		7
65	Title is missing!. , 2020, 15, e0230853.		Ο
66	Title is missing!. , 2020, 15, e0230853.		0
67	Title is missing!. , 2020, 15, e0230853.		0
68	Title is missing!. , 2020, 15, e0230853.		0
69	Maintaining the Sense of Agency in Semi-Autonomous Robot Conferencing. Future Internet, 2019, 11, 143.	3.8	4
70	How the Realism of Robot Is Needed for Individuals With Autism Spectrum Disorders in an Interview Setting. Frontiers in Psychiatry, 2019, 10, 486.	2.6	4
71	Relaxing Gaze Aversion of Adolescents With Autism Spectrum Disorder in Consecutive Conversations With Human and Android Robot—A Preliminary Study. Frontiers in Psychiatry, 2019, 10, 370.	2.6	21
72	Development of an Effective Information Media Using Two Android Robots. Applied Sciences (Switzerland), 2019, 9, 3442.	2.5	5

#	Article	IF	CITATIONS
73	Ostensive-Cue Sensitive Learning and Exclusive Evaluation of Policies: A Solution for Measuring Contingency of Experiences for Social Developmental Robot. Frontiers in Robotics and Al, 2019, 6, 2.	3.2	3
74	Effect of self-representation of interaction history by the robot on perceptions of mind and positive relationship: a case study on a home-use robot. Advanced Robotics, 2019, 33, 1112-1128.	1.8	10
75	LSTM-based Turn-taking Estimation Model using Lexical/Prosodic Contents and Dialog History. Transactions of the Japanese Society for Artificial Intelligence, 2019, 34, C-I65_1-9.	0.1	Ο
76	Information-theoretic investigation of impact of huggable communication medium on prefrontal brain activation. Advanced Robotics, 2019, 33, 1019-1029.	1.8	3
77	Role-Play-Based Guidance for Job Interviews Using an Android Robot for Individuals With Autism Spectrum Disorders. Frontiers in Psychiatry, 2019, 10, 239.	2.6	19
78	Robotic eyes that express personality. Advanced Robotics, 2019, 33, 350-359.	1.8	5
79	Comedic experience with two robots aided a child with autism spectrum disorder to realize the importance of nonverbal communication. Psychiatry and Clinical Neurosciences, 2019, 73, 423-423.	1.8	7
80	Android Pretending to Have Similar Traits of Imagination as Humans Evokes Stronger Perceived Capacity to Feel. Frontiers in Robotics and Al, 2019, 6, 88.	3.2	3
81	Neural-network-based Memory for a Social Robot. ACM Transactions on Human-Robot Interaction, 2019, 8, 1-27.	4.1	7
82	Differential Effect of the Physical Embodiment on the Prefrontal Cortex Activity as Quantified by Its Entropy. Entropy, 2019, 21, 875.	2.2	4
83	How Prior Knowledge and Belief Affect our Attitude Toward the Android of "Soseki Natsume�. Journal of Japan Society for Fuzzy Theory and Intelligent Informatics, 2019, 31, 852-858.	0.0	0
84	Brief Report: Evaluating the Utility of Varied Technological Agents to Elicit Social Attention from Children with Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 2019, 49, 1700-1708.	2.7	34
85	Improvement of Japanese adults' English speaking skills via experiences speaking to a robot. Journal of Computer Assisted Learning, 2019, 35, 228-245.	5.1	18
86	Communication Support via a Tele-Operated Robot for Easier Talking: Case/Laboratory Study of Individuals with/Without Autism Spectrum Disorder. International Journal of Social Robotics, 2019, 11, 171-184.	4.6	24
87	Will Older Adults Accept a Humanoid Robot as a Walking Partner?. International Journal of Social Robotics, 2019, 11, 343-358.	4.6	23
88	Brief Report: A Novel System to Evaluate Autism Spectrum Disorders Using Two Humanoid Robots. Journal of Autism and Developmental Disorders, 2019, 49, 1709-1716.	2.7	16
89	Two Demonstrators Are Better Than One—A Social Robot That Learns to Imitate People With Different Interaction Styles. IEEE Transactions on Cognitive and Developmental Systems, 2019, 11, 319-333.	3.8	4
90	Estimating Children's Social Status Through Their Interaction Activities in Classrooms with a Social Robot. International Journal of Social Robotics, 2019, 11, 35-48.	4.6	11

#	Article	IF	CITATIONS
91	I hear your yesâ€no questions: Children's response tendencies to a humanoid robot. Infant and Child Development, 2018, 27, e2079.	1.5	8
92	Intrinsically motivated reinforcement learning for human–robot interaction in the real-world. Neural Networks, 2018, 107, 23-33.	5.9	39
93	Impressions of Humanness for Android Robot may Represent an Endophenotype for Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 2018, 48, 632-634.	2.7	16
94	A Robot that Distributes Flyers to Pedestrians in a Shopping Mall. International Journal of Social Robotics, 2018, 10, 421-437.	4.6	27
95	Potential Health Benefit of Physical Embodiment in Elderly Counselling: A Longitudinal Case Study. , 2018, , .		1
96	Estimating Children's Characteristics by Observing their Classroom Activities. , 2018, , .		3
97	Intimate Touch Conversation through Teleoperated Android: Toward Enhancement of Interpersonal Closeness in Elderly People. , 2018, , .		3
98	Similarity of the Impact of Humanoid and In-Person Communications on Frontal Brain Activity of Older People. , 2018, , .		3
99	The impact of robotic intervention on joint attention in children with autism spectrum disorders. Molecular Autism, 2018, 9, 46.	4.9	54
100	Persistence of the Uncanny Valley. , 2018, , 163-187.		24
101	Can Robotic Systems Promote Self-Disclosure in Adolescents with Autism Spectrum Disorder? A Pilot Study. Frontiers in Psychiatry, 2018, 9, 36.	2.6	37
102	Implementation and Evaluation of Chat-oriented Dialogue System for an Android Robot in Live Streaming Media in Which Users Can Speak at Any Time. Transactions of the Japanese Society for Artificial Intelligence, 2018, 33, DSH-G_1-13.	0.1	3
103	At the Café—Exploration and Analysis of People's Nonverbal Behavior Toward an Android. , 2018, , 375-397.		1
104	Theatrical approach: Designing human-like behaviour in humanoid robots. Robotics and Autonomous Systems, 2017, 89, 158-166.	5.1	40
105	Effect of the cervical structure on the operability of teleoperated humanoid head. Artificial Life and Robotics, 2017, 22, 497-502.	1.2	1
106	A design of robotic spine composed of parallelogram actuation modules. Artificial Life and Robotics, 2017, 22, 477-482.	1.2	3
107	Tele-Operating an Android Robot to Promote the Understanding of Facial Expressions and to Increase Facial Expressivity in Individuals With Autism Spectrum Disorder. American Journal of Psychiatry, 2017, 174, 904-905.	7.2	15
	Emotional state estimation using a modified gradient-based neural architecture with weighted		

#	Article	IF	CITATIONS
109	Personal Greetings: Personalizing Robot Utterances Based on Novelty of Observed Behavior. International Journal of Social Robotics, 2017, 9, 181-198.	4.6	18
110	A confidence-based roadmap using Gaussian process regression. Autonomous Robots, 2017, 41, 1013-1026.	4.8	0
111	Study investigating the ease of talking via a robot tele-operated from same or different rooms. , 2017, ,		0
112	A robot counseling system $\hat{a} \in \mathbb{C}$ What kinds of topics do we prefer to disclose to robots?. , 2017, , .		18
113	Pain and self-preservation in autonomous robots: From neurobiological models to psychiatric disease. , 2017, , .		1
114	Subthalamic nucleus detects unnatural android movement. Scientific Reports, 2017, 7, 17851.	3.3	6
115	Huggable Communication Medium Maintains Level of Trust during Conversation Game. Frontiers in Psychology, 2017, 8, 1862.	2.1	28
116	Android Robot-Mediated Mock Job Interview Sessions for Young Adults with Autism Spectrum Disorder: A Pilot Study. Frontiers in Psychiatry, 2017, 8, 169.	2.6	47
117	Creation and Staging of Android Theatre "Sayonaraâ€ŧowards Developing Highly Human-Like Robots. Future Internet, 2017, 9, 75.	3.8	25
118	Challenges for Robots Acting on a Stage. , 2017, , 935-977.		1
119	A pilot study for robot appearance preferences among high-functioning individuals with autism spectrum disorder: Implications for therapeutic use. PLoS ONE, 2017, 12, e0186581.	2.5	36
120	Retaining Human-Robots Conversation: Comparing Single Robot to Multiple Robots in a Real Event. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2017, 21, 675-685.	0.9	20
121	Field Trial for Social Robots that Invite Visitors to Stores. Journal of the Robotics Society of Japan, 2017, 35, 334-345.	0.1	12
122	Social Skill Acquisition Model through Face-to-Face Interaction: Local Contingency for Open-Ended Development. Frontiers in Robotics and Al, 2016, 3, .	3.2	3
123	Developmental robot with ostensive cue sensitive learning for real-world interaction based on local contingency evaluation. , 2016, , .		1
124	Response Tendencies of Four-Year-Old Children to Communicative and Non-Communicative Robots. , 2016, , .		3
125	Speech driven trunk motion generating system based on physical constraint. , 2016, , .		13
126	Human creativity can be facilitated through interacting with a social robot. , 2016, , .		23

#	Article	IF	CITATIONS
127	On the human perception of dissimilarities between postures of humanoids. Advanced Robotics, 2016, 30, 1395-1405.	1.8	1
128	Pre-scheduled Turn-Taking between Robots to Make Conversation Coherent. , 2016, , .		25
129	Eyeblink Synchrony in Multimodal Human-Android Interaction. Scientific Reports, 2016, 6, 39718.	3.3	13
130	Adaptive foraging for simulated and real robotic swarms: the dynamical response threshold approach. Swarm Intelligence, 2016, 10, 1-31.	2.2	85
131	Automated Courier Transport on the Rail Network: Concept and its Feasibility. International Journal of Intelligent Transportation Systems Research, 2016, 14, 195-203.	1.1	Ο
132	Understanding the Principle of Communication through a Field Experiment Using an Android. Journal of Japan Institute of Electronics Packaging, 2016, 19, 378-383.	0.1	0
133	A Robot in a Science Room to Help Understanding of Science Class. Journal of the Robotics Society of Japan, 2015, 33, 789-799.	0.1	3
134	The role of social eye-gaze in children's and adults' ownership attributions to robotic agents in three cultures. Interaction Studies, 2015, 16, 1-28.	0.6	19
135	Persistence of the uncanny valley: the influence of repeated interactions and a robot's attitude on its perception. Frontiers in Psychology, 2015, 6, 883.	2.1	72
136	Infant discrimination of humanoid robots. Frontiers in Psychology, 2015, 6, 1397.	2.1	9
137	Online speech-driven head motion generating system and evaluation on a tele-operated robot. , 2015, , .		8
138	How do People Expect Humanoids to Respond to Touch?. International Journal of Social Robotics, 2015, 7, 743-765.	4.6	3
139	Simultaneous people tracking and robot localization in dynamic social spaces. Autonomous Robots, 2015, 39, 43-63.	4.8	9
140	Capturing Expertise: Developing Interaction Content for a Robot Through Teleoperation by Domain Experts. International Journal of Social Robotics, 2015, 7, 653-672.	4.6	6
141	What kind of floor am I standing on? Floor surface identification by a small humanoid robot through full-body motions. Advanced Robotics, 2015, 29, 469-480.	1.8	6
142	Will People Keep the Secret of a Humanoid Robot?. , 2015, , .		46
143	Robot Form and Motion Influences Social Attention. , 2015, , .		10
144	Sampling-based Motion Planning with a Prediction Model using Fast Gaussian Process Regression. IEEJ Transactions on Electronics, Information and Systems, 2015, 135, 526-533.	0.2	0

#	Article	IF	CITATIONS
145	Challenges for Robots Acting on a Stage. , 2015, , 1-43.		0
146	On the Well-Timed Assistance in Power-Assisted Sit-to-Stand Movement. SICE Journal of Control Measurement and System Integration, 2015, 8, 312-320.	0.7	0
147	Effect of biased feedback on motor imagery learning in BCI-teleoperation system. Frontiers in Systems Neuroscience, 2014, 8, 52.	2.5	57
148	Finding a person with a Wi-Fi device in a crowd of pedestrians. Advanced Robotics, 2014, 28, 441-448.	1.8	10
149	Designing robot behavior in conversations based on contemporary colloquial theatre theory. , 2014, , \cdot		6
150	Adaptive LSH based on the particle swarm method with the attractor selection model for fast approximation of Gaussian process regression. Artificial Life and Robotics, 2014, 19, 220-226.	1.2	6
151	How to train your robot - teaching service robots to reproduce human social behavior. , 2014, , .		16
152	The effect of feedback presentation on motor imagery performance during BCI-teleoperation of a humanlike robot. , 2014, , .		4
153	Foraging optimization in swarm robotic systems based on an adaptive response threshold model. Advanced Robotics, 2014, 28, 1343-1356.	1.8	17
154	Predictive control method for a redundant robot using a non-parametric predictor. Advanced Robotics, 2014, 28, 647-657.	1.8	6
155	Who is Interacting With me? Identification of an Interacting Person Through Playful Interaction With a Small Robot. IEEE Transactions on Human-Machine Systems, 2014, 44, 169-179.	3.5	9
156	Design and development of a low power Tactile Multi-Sensor Network for robotic systems. , 2014, , .		3
157	No joking aside. , 2014, , .		6
158	Acceptability of a Teleoperated Android by Senior Citizens in Danish Society. International Journal of Social Robotics, 2014, 6, 429-442.	4.6	20
159	The Meaning of Robot/Android-Human Theater: From the Perspectives of Engineering, Science and Arts. leice Ess Fundamentals Review, 2014, 7, 326-335.	0.1	0
160	How human can interact with android?. Transactions of the Japanese Society for Artificial Intelligence, 2014, 29, 60-68.	0.1	2
161	Recommendation Effects of a Social Robot for Advertisement-Use Context in a Shopping Mall. International Journal of Social Robotics, 2013, 5, 251-262.	4.6	88
162	Analysis of Motor Synergies Utilization for Optimal Movement Generation for a Human-like Robotic Arm. International Journal of Automation and Computing, 2013, 10, 515-524.	4.5	10

#	Article	IF	CITATIONS
163	Robot embodiment, operator modality, and social interaction in tele-existence: A project outline. , 2013, , .		1
164	It's not polite to point Generating socially-appropriate deictic behaviors towards people. , 2013, , .		18
165	Tell me your story, robot. Introducing an android as fiction character leads to higher perceived usefulness and adoption intention. , 2013, , .		6
166	Effect of Robot's Whispering Behavior on People's Motivation. International Journal of Social Robotics, 2013, 5, 5-16.	4.6	38
167	Supervisory control of multiple social robots for navigation. , 2013, , .		14
168	Designing and Implementing a Human–Robot Team for Social Interactions. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43, 843-859.	9.3	39
169	Task Allocation for a robotic swarm based on an Adaptive Response Threshold Model. , 2013, , .		12
170	EEG theta and Mu oscillations during perception of human and robot actions. Frontiers in Neurorobotics, 2013, 7, 19.	2.8	59
171	Perceptual Social Dimensions of Human - Humanoid Robot Interaction. Advances in Intelligent Systems and Computing, 2013, , 409-421.	0.6	4
172	Proposal and Evaluation of a Head Tilting Generation Method for Humanoid Communication Robot. Transactions of the Japanese Society for Artificial Intelligence, 2013, 28, 112-121.	0.1	0
173	The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Social Cognitive and Affective Neuroscience, 2012, 7, 413-422.	3.0	320
174	From an object to a subject - Transitions of an android robot into a social being. , 2012, , .		3
175	Effect of perspective change in body ownership transfer to teleoperated android robot. , 2012, , .		14
176	Do robot appearance and speech affect people's attitude? Evaluation through the Ultimatum Game. , 2012, , .		16
177	Hopping of a monopedal robot with a biarticular muscle driven by electromagnetic linear actuators. , 2012, , .		18
178	Isolation of physical traits and conversational content for personality design. , 2012, , .		1
179	Possibilities of Androids as poetry-reciting agent. , 2012, , .		17
180	A Path-Planning Method for Human-Tracking Agents Based on Long-Term Prediction. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2012, 42, 1543-1554.	2.9	6

#	Article	IF	CITATIONS
181	"Robovie, you'll have to go into the closet nowâ€: Children's social and moral relationships with a humanoid robot Developmental Psychology, 2012, 48, 303-314.	1.6	285
182	Control of real-world complex robots using a biologically inspired algorithm. Artificial Life and Robotics, 2012, 17, 42-46.	1.2	0
183	A study on the use of tactile instructions for developing robot's motions. Artificial Life and Robotics, 2012, 17, 197-203.	1.2	0
184	Personality distortion in communication through teleoperated robots. , 2012, , .		15
185	Studies of motor synergies in generating optimal goal-directed movements in human-like robotic arm. , 2012, , .		2
186	Bacteria-inspired underactuated mobile robot based on a biological fluctuation. Adaptive Behavior, 2012, 20, 225-236.	1.9	9
187	A Model to Explain the Emergence of Imitation Development Based on Predictability Preference. IEEE Transactions on Autonomous Mental Development, 2012, 4, 17-28.	1.6	2
188	Estimation of Occlusion Rate Based on Biological Fluctuation for Indoor Lighting Control. Transactions of the Society of Instrument and Control Engineers, 2012, 48, 740-744.	0.2	1
189	Development of Humanoid Platforms for Studying Synergistic Intelligence. Journal of the Robotics Society of Japan, 2012, 30, 20-25.	0.1	2
190	Separation of tactile information from multiple sources based on spatial ICA and time series clustering. , 2011, , .		0
191	Teaching by touching: Interpretation of tactile instructions for motion development. , 2011, , .		3
192	Development of an android robot for psychological support in medical and welfare fields. , 2011, , .		32
193	'Yuragi'-Based Adaptive Mobile Robot Search With and Without Gradient Sensing: From Bacterial Chemotaxis to a Levy Walk. Advanced Robotics, 2011, 25, 2019-2037.	1.8	16
194	Real-Time Object Detection Using Adaptive Background Model and Margined Sign Correlation. IEICE Transactions on Information and Systems, 2011, E94-D, 325-335.	0.7	0
195	A path planning method for human tracking agents using variable-term prediction based on dynamic k-nearest neighbor algorithm. , 2011, , .		1
196	Audio-video people recognition system for an intelligent environment. , 2011, , .		2
197	HUMANOID PLATFORMS FOR COGNITIVE DEVELOPMENTAL ROBOTICS. International Journal of Humanoid Robotics, 2011, 08, 391-418.	1.1	11
198	Dynamic Analysis Method for Electromagnetic Artificial Muscle Actuator under PID Control. IEEJ Transactions on Industry Applications, 2011, 131, 166-170.	0.2	12

#	Article	IF	CITATIONS
199	Exploring the Natural Reaction of Young and Aged Person with Telenoid in a Real World. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2011, 15, 592-597.	0.9	89
200	A Network Robot System for Cooperative Guide Service in a Shopping Mall. Journal of the Robotics Society of Japan, 2011, 29, 544-553.	0.1	2
201	Toward a Collaboratively Creative Society through Human-Robot Symbiosis. Journal of the Robotics Society of Japan, 2011, 29, 868-870.	0.1	6
202	Multimodal Joint Attention Based on Mutual Exclusivity Principle. Journal of the Robotics Society of Japan, 2011, 27, 814-822.	0.1	0
203	An Experimental Study of the Use of Multiple Humanoid Robots as a Social Communication Medium. Lecture Notes in Computer Science, 2011, , 32-41.	1.3	0
204	Teaching by touching: Interpretation of tactile instructions for motion development. , 2011, , .		0
205	A path planning method for human tracking agents using variable-term prediction based on dynamic k-nearest neighbor algorithm. , 2011, , .		0
206	Human tracking with variable prediction steps based on Kullback-Leibler divergence. Artificial Life and Robotics, 2010, 15, 111-116.	1.2	3
207	Person identification by integrating wearable sensors and tracking results from environmental sensors. , 2010, , .		8
208	Position prediction in crossing behaviors. , 2010, , .		4
209	Incorporated identity in interaction with a teleoperated android robot: A case study. , 2010, , .		31
210	Relative posture estimation using high frequency markers. , 2010, , .		0
211	Easy development of communicative behaviors in social robots. , 2010, , .		6
212	An adaptive switching behavior between levy and Brownian random search in a mobile robot based on biological fluctuation. , 2010, , .		15
213	Automatic position calibration and sensor displacement detection for networks of laser range finders for human tracking. , 2010, , .		15
214	A model of the emergence of early imitation development based on predictability preference. , 2010, , .		3
215	A Communication Robot in a Shopping Mall. IEEE Transactions on Robotics, 2010, 26, 897-913.	10.3	251
216	A Model to Explain the Emergence of Imitation Development based on Predictability Preference. Journal of the Robotics Society of Japan, 2010, 28, 1047-1057.	0.1	0

#	Article	IF	CITATIONS
217	Posture Estimation by Using High Frequency Markers and Kernel Regressions. IEEJ Transactions on Electronics, Information and Systems, 2010, 130, 1513-1523.	0.2	0
218	Action Recognition and Suspicious Action Detection with Mixture Distributions of Action Primitives. IEEJ Transactions on Electronics, Information and Systems, 2010, 130, 546-556.	0.2	2
219	Face tracking by using omnidirectional sensor network. , 2009, , .		0
220	Social balancing effect of eye contact. , 2009, , .		2
221	Psychological effects on interpersonal communication by bystander android using motions based on human-like needs. , 2009, , .		15
222	Noise-based underactuated mobile robot inspired by bacterial motion mechanism. , 2009, , .		2
223	Field trial of networked social robots in a shopping mall. , 2009, , .		54
224	Cognitive Developmental Robotics: A Survey. IEEE Transactions on Autonomous Mental Development, 2009, 1, 12-34.	1.6	472
225	Humanoid Robots as a Broadcasting Communication Medium inÂOpen Public Spaces. International Journal of Social Robotics, 2009, 1, 157-169.	4.6	40
226	Control method for a robot based on the adaptive attractor selection model. , 2009, , .		2
227	How about laughter? Perceived naturalness of two laughing humanoid robots. , 2009, , .		9
228	1 DOF swimming robot inspired by bacterial motion mechanism. , 2009, , .		1
229	Vibration suppression control using a pattern generator for a robot driven by air actuators. , 2009, , .		2
230	Yuragi-based adaptive searching behavior in mobile robot: From bacterial chemotaxis to Levy walk. , 2009, , .		21
231	Towards Computational Developmental Model based on Synthetic Approaches. , 2009, , .		1
232	Laser-Based Tracking of Human Position and Orientation Using Parametric Shape Modeling. Advanced Robotics, 2009, 23, 405-428.	1.8	83
233	2A1-E20 Motion development as direct CPG adjustment by touching. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2009, 2009, _2A1-E20_12A1-E20_4.	0.0	0
234	People Tracking and Identification by Statistical Integration of Floor Sensors and Acceleration Sensors. Transactions of the Society of Instrument and Control Engineers, 2009, 45, 60-68.	0.2	2

#	Article	IF	CITATIONS
235	Analysis of Humanoid Appearances in Human–Robot Interaction. IEEE Transactions on Robotics, 2008, 24, 725-735.	10.3	178
236	A Robust Speech Recognition System for Communication Robots in Noisy Environments. , 2008, 24, 759-763.		27
237	Integrating passive RFID tag and person tracking for social interaction in daily life. , 2008, , .		4
238	Adapting Robot Behavior for Human–Robot Interaction. IEEE Transactions on Robotics, 2008, 24, 911-916.	10.3	109
239	ROBOT <i>MANZAI</i> : ROBOT CONVERSATION AS A PASSIVE–SOCIAL MEDIUM. International Journal of Humanoid Robotics, 2008, 05, 67-86.	1.1	52
240	GROUP ATTENTION CONTROL FOR COMMUNICATION ROBOTS. International Journal of Humanoid Robotics, 2008, 05, 587-608.	1.1	5
241	A semi-autonomous communication robot. , 2008, , .		72
242	Simultaneous teleoperation of multiple social robots. , 2008, , .		36
243	Who will be the customer?. , 2008, , .		82
244	How quickly should communication robots respond?. , 2008, , .		58
245	Reducing influence of robot's motion on tactile sensor based on partially linear model. , 2008, , .		4
246	A Principle and Characteristics of a Flexible and Stretchable Tactile Sensor Based on Static Electricity Phenomenon. Journal of the Robotics Society of Japan, 2008, 26, 210-216.	0.1	9
247	Three Fundamental Issues Required for a Socially Accepted Robot. Journal of the Robotics Society of Japan, 2008, 26, 812-820.	0.1	1
248	Motor Learning System Compensating the Characteristics of Pneumatic Manipulators. Transactions of the Society of Instrument and Control Engineers, 2008, 44, 525-531.	0.2	0
249	A Robot in a Shopping Mall that Affectively Guide Customers. Journal of the Robotics Society of Japan, 2008, 26, 821-832.	0.1	12
250	Symbiosis of Human and Communication Robots. , 2008, , 15-23.		1
251	Analysis of People Trajectories with Ubiquitous Sensors in a Science Museum. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	53
252	Map acquisition and classification of haptic interaction using cross correlation between distributed tactile sensors on the whole body surface. , 2007, , .		6

#	Article	IF	CITATIONS
253	People tracking by cross modal association of vision sensors and acceleration sensors. , 2007, , .		1
254	Analysis of head motions and speech, and head motion control in an android. , 2007, , .		16
255	CB2: A child robot with biomimetic body for cognitive developmental robotics. , 2007, , .		87
256	What is a Human?. Interaction Studies, 2007, 8, 363-390.	0.6	101
257	Interactive Humanoids and Androids: Promise and Reality. Proceedings of the IEEE, 2007, 95, 699-700.	21.3	2
258	Generating natural posture in an android by mapping human posture in three-dimensional position space. , 2007, , .		4
259	Natural deictic communication with humanoid robots. , 2007, , .		27
260	Do android's actions affect young children's actions?. , 2007, , .		1
261	Building artificial humans to understand humans. Journal of Artificial Organs, 2007, 10, 133-142.	0.9	94
262	The Design Guide for "Lifelike" Communication Robots Based on Developmental Psychology Findings. Journal of the Robotics Society of Japan, 2007, 25, 1134-1144.	0.1	3
263	Robovie-IV: An Everyday Communication Robot and its Daily Communication in an Office. Journal of the Robotics Society of Japan, 2007, 25, 822-833.	0.1	2
264	Robots as social mediators: coding for engineers. , 2006, , .		7
265	Evaluation of Android Using Unconscious Recognition. , 2006, , .		20
266	Robust Speech Recognition System for Communication Robots in Real Environments. , 2006, , .		18
267	Humanlike conversation with gestures and verbal cues based on a three-layer attention-drawing model. Connection Science, 2006, 18, 379-402.	3.0	57
268	Preliminary Field Trial for Teleoperated Communication Robots. , 2006, , .		23
269	Three-Layer Model for Generation and Recognition of Attention-Drawing Behavior. , 2006, , .		10
270	What is a Human? - Toward Psychological Benchmarks in the Field of Human-Robot Interaction. , 2006, ,		76

#	Article	IF	CITATIONS
271	The uncanny advantage of using androids in cognitive and social science research. Interaction Studies, 2006, 7, 297-337.	0.6	445
272	An approach for a social robot to understand human relationships. Interaction Studies, 2006, 7, 369-403.	0.6	13
273	Development of face-to-face communication function for a humanoid robot. Systems and Computers in Japan, 2006, 37, 1-14.	0.2	29
274	A humanoid robot that pretends to listen to route guidance from a human. Autonomous Robots, 2006, 22, 87-100.	4.8	75
275	The effects of responsive eye movement and blinking behavior in a communication robot. , 2006, , .		40
276	Evaluation of Prosodic and Voice Quality Features on Automatic Extraction of Paralinguistic Information. , 2006, , .		6
277	Android science: conscious and subconscious recognition. Connection Science, 2006, 18, 319-332.	3.0	69
278	Evaluating the human likeness of an android by comparing gaze behaviors elicited by the android and a person. Advanced Robotics, 2006, 20, 1147-1163.	1.8	52
279	Three-Layered Draw-Attention Model for Communication Robots with Pointing Gesture and Verbal Cues. Journal of the Robotics Society of Japan, 2006, 24, 964-975.	0.1	5
280	Perceptual Information Infrastructure. Journal of the Robotics Society of Japan, 2005, 23, 670-673.	0.1	0
281	Interactive Robots as Social Partners and Peer Tutors for Children: A Field Trial. Human-Computer Interaction, 2004, 19, 61-84.	4.4	621
282	Cognitive developmental robotics as a new paradigm for the design of humanoid robots. Robotics and Autonomous Systems, 2001, 37, 185-193.	5.1	342
283	Robovie: an interactive humanoid robot. Industrial Robot, 2001, 28, 498-504.	2.1	202
284	Building environmental models of man-made environments by panoramic sensing. Advanced Robotics, 1994, 9, 399-416.	1.8	2
285	Acquiring omnidirectional range information. Systems and Computers in Japan, 1992, 23, 47-56.	0.2	1
286	Can infants use robot gaze for object learning?. Contemporary Discourses of Hate and Radicalism Across Space and Genres, 0, , 33-46.	0.0	1