Leo H De Graaff

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/10651001/publications.pdf
Version: 2024-02-01

The Transcriptional Activator XInR Regulates Both Xylanolytic and Endoglucanase Cene Expression in
<i>Aspergillus niger<|i>. Applied and Environmental Microbiology, 1998, 64, 3615-3619.

Isolation and analysis ofxlnR, encoding a transcriptional activator co-ordinating xylanolytic expression inAspergillus niger. Molecular Microbiology, 1998, 27, 131-142.

Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and
Hypocrea jecorina (Trichoderma reesei). Applied Microbiology and Biotechnology, 2008, 78, 211-220.
3.6

Two Cellobiohydrolase-Encoding Genes from <i>Aspergillus niger</i> Require <scp>d</scp>-Xylose
4 and the Xylanolytic Transcriptional Activator XInR for Their Expression. Applied and Environmental
$3.1 \quad 183$ Microbiology, 1999, 65, 4340-4345.
$5 \quad$ CreA modulates the XInR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Research in Microbiology, 1999, 150, 281-285.

The Aspergillus niger transcriptional activator $X \ln \mathrm{R}$, which is involved in the degradation of the
6 polysaccharides xylan and cellulose, also regulates d-xylose reductase gene expression. Molecular Microbiology, 2000, 36, 193-200.

7 The polygalacturonases of Aspergillus niger are encoded by a family of diverged genes. FEBS Journal,
7 1992, 208, 83-90.

EgIC, a New Endoglucanase from Aspergillus niger with Major Activity towards Xyloglucan. Applied and Environmental Microbiology, 2002, 68, 1556-1560.
beta-Xylosidase Activity, Encoded by xInD, is Essential for Complete Hydrolysis of Xylan by Aspergillus
Niger but not for Induction of the Xylanolytic Enzyme Spectrum. FEBS Journal, 1997, 245, 164-173.

Dual transcriptional profiling of a bacterial/fungal confrontation: <i>Collimonas fungivorans</i>
10 versus <i>Aspergillus niger<|i>. ISME Journal, 2011, 5, 1494-1504.
9.8

105

11 CreA mediates repression of the regulatory gene $x \ln R$ which controls the production of xylanolytic enzymes in Aspergillus nidulans. Fungal Genetics and Biology, 2008, 45, 984-993.

Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger.
12 Microbial Cell Factories, 2014, 13, 11.
4.0

99

Differential Expression of Three $\hat{I}_{ \pm}$-Galactosidase Genes and a Single $\hat{1}^{2}$-Galactosidase Gene from
<i>Aspergillus niger</i>. Applied and Environmental Microbiology, 1999, 65, 2453-2460.

Functional analysis of the transcriptional activator $\mathrm{X} \ln \mathrm{R}$ from Aspergillus niger. Microbiology (United Kingdom), 2004, 150, 1367-1375.

A Transcriptional Activator, AoXInR, Controls the Expression of Genes Encoding Xylanolytic Enzymes
15 A Transcriptional Activator, AoXInR, Controls the Expression of Genes Ence.
2.1

90

Metabolic engineering of Rhizopus oryzae for the production of platform chemicals. Applied
Microbiology and Biotechnology, 2012, 94, 875-886.
3.6

90

Purification and Characterization of Two Different $\left.\hat{I}_{ \pm}-\langle s c p\rangle|<| s c p\right\rangle-R h a m n o s i d a s e s$, RhaA and RhaB,
from<i>Aspergillus aculeatus</i>. Applied and Environmental Microbiology, 2001, 67, 2230-2234.
3.1

88

Characterization of Galactosidases from Aspergillus niger: Purification of a Novel $\hat{I} \pm-G a l a c t o s i d a s e$
Activity. Enzyme and Microbial Technology, 1998, 22, 383-390.
Cloning of the Trichoderma reesei pyrG gene and its use as a homologous marker for a high-frequency
transformation system. Current Genetics, 1990, 18, 447-451.

$22 \quad$| Induction of glucose oxidase, catalase, and lactonase in Aspergillus niger. Current Genetics, 1993, 24, |
| :--- |
| $408-416$. |

Construction of a Genetically Modified Wine YeastStrain Expressing the Aspergillus aculeatus rhaA23 Gene,Encoding an $\hat{I}_{ \pm}$I -Rhamnosidase ofEnologicallnterest. Applied and Environmental Microbiology,$3.1 \quad 64$2003, 69, 7558-7562.
24 Molecular Cloning and Transcriptional Regulation of the Aspergillus nidulans xInD Gene Encoding a $\hat{1}^{2}$-Xylosidase. Applied and Environmental Microbiology, 1998, 64, 1412-1419.$3.1 \quad 64$
Cloning of the Aspergillus niger gene encoding $\hat{I} \pm-l$-arabinofuranosidase A. Applied Microbiology
Biotechnology, 1993, 39, 335-340.
26 Molecular cloning, expression and structure of the endo-1,5-Î \pm-l-arabinase gene of Aspergillus ni
Applied Microbiology and Biotechnology, 1993, 40, 318-326.
27 Proteomics of industrial fungi: trends and insights for biotechnology. Applied Microbiology and Biotechnology, 2011, 89, 225-237.$3.6 \quad 53$
Proteomic Analysis of the Secretory Response of Aspergillus niger to D-Maltose and D-Xylose. PLoS2.547
ONE, 2011, 6, e20865.$\hat{I} \pm--$-Rhamnosidases. Journal of Agricultural and Food Chemistry, 2004, 52, 6136-6142.
43
The Aspergillus niger multicopper oxidase family: analysis and overexpression of laccase-like encoding4.0genes. Microbial Cell Factories, 2011, 10, 78.Shotgun Proteomics of <i>Aspergillus niger</i> Microsomes upon <scp>d</scp>-Xylose Induction.3.139Applied and Environmental Microbiology, 2010, 76, 4421-4429.Aspergillus niger Protein EstA Defines a New Class of Fungal Esterases within the $\hat{I} \pm \hat{I}^{2}$ Hydrolase Fold3.329Superfamily of Proteins. Structure, 2004, 12, 677-687.Overexpression of the Aspergillus niger GatA transporter leads to preferential use of D-galacturonicacid over D-xylose. AMB Express, 2014, 4, 66.
Cloning and characterisation of genes (pkcl andpkcA) encoding protein kinase C homologues
fromTrichoderma reesei andAspergillus niger. Molecular Genetics and Genomics, 1996, 250, 17-28.

40 Structure and function of Aspergillus niger laccase McoG. Biocatalysis, 2017, 3, 1-21.

41	Overexpression of a modified 6-phosphofructo-1-kinase results in an increased itaconic acid productivity in Aspergillus niger. AMB Express, 2013, 3, 57.	3.0	17
42	Identification of modules in Aspergillus niger by gene co-expression network analysis. Fungal Genetics and Biology, 2010, 47, 539-550.	2.1	15
43	Comparative proteomics of <i>Rhizopus delemar</i>ATCC 20344 unravels the role of amino acid catabolism in fumarate accumulation. PeerJ, 2017, 5, e3133.	2.0	14
44	Production of cyanophycin in Rhizopus oryzae through the expression of a cyanophycin synthetase encoding gene. Applied Microbiology and Biotechnology, 2012, 93, 1167-1174.	3.6	13
45	Modeling and analysis of the dynamic behavior of the XInR regulon in Aspergillus niger. BMC Systems Biology, 2011,5, S14.	3.0	11
46	Pathway transfer in fungi. Bioengineered, 2014, 5, 335-339.	3.2	10
47	Heterologous expression of Gaeumannomyces graminis lipoxygenase in Aspergillus nidulans. AMB Express, 2014, 4, 65.	3.0	7
48	Evaluation of Design Strategies for Time Course Experiments in Genetic Networks: Case Study of the $X \ln R$ Regulon in Aspergillus niger. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1316-1325.	3.0	4
49	Toolkit for Visualization of the Cellular Structure and Organelles in <i>Aspergillus niger</i>. ACS Synthetic Biology, 2014, 3, 995-998.	3.8	3

50 (27) A. niger protein â€œEstAâ€; perhaps a new electrotactin, defines a new class of fungal esterases

