
Leo H De Graaff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10651001/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Transcriptional Activator XInR Regulates Both Xylanolytic and Endoglucanase Gene Expression in <i>Aspergillus niger</i> . Applied and Environmental Microbiology, 1998, 64, 3615-3619.	3.1	326
2	Isolation and analysis ofxlnR, encoding a transcriptional activator co-ordinating xylanolytic expression inAspergillus niger. Molecular Microbiology, 1998, 27, 131-142.	2.5	304
3	Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Applied Microbiology and Biotechnology, 2008, 78, 211-220.	3.6	245
4	Two Cellobiohydrolase-Encoding Genes from <i>Aspergillus niger</i> Require <scp>d</scp> -Xylose and the Xylanolytic Transcriptional Activator XInR for Their Expression. Applied and Environmental Microbiology, 1999, 65, 4340-4345.	3.1	183
5	CreA modulates the XInR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Research in Microbiology, 1999, 150, 281-285.	2.1	178
6	The Aspergillus niger transcriptional activator XInR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates d-xylose reductase gene expression. Molecular Microbiology, 2000, 36, 193-200.	2.5	157
7	The polygalacturonases of Aspergillus niger are encoded by a family of diverged genes. FEBS Journal, 1992, 208, 83-90.	0.2	118
8	EglC, a New Endoglucanase from Aspergillus niger with Major Activity towards Xyloglucan. Applied and Environmental Microbiology, 2002, 68, 1556-1560.	3.1	118
9	beta-Xylosidase Activity, Encoded by xlnD, is Essential for Complete Hydrolysis of Xylan by Aspergillus Niger but not for Induction of the Xylanolytic Enzyme Spectrum. FEBS Journal, 1997, 245, 164-173.	0.2	106
10	Dual transcriptional profiling of a bacterial/fungal confrontation: <i>Collimonas fungivorans</i> versus <i>Aspergillus niger</i> . ISME Journal, 2011, 5, 1494-1504.	9.8	105
11	CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans. Fungal Genetics and Biology, 2008, 45, 984-993.	2.1	102
12	Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microbial Cell Factories, 2014, 13, 11.	4.0	99
13	Differential Expression of Three α-Galactosidase Genes and a Single β-Galactosidase Gene from <i>Aspergillus niger</i> . Applied and Environmental Microbiology, 1999, 65, 2453-2460.	3.1	97
14	Functional analysis of the transcriptional activator XlnR from Aspergillus niger. Microbiology (United Kingdom), 2004, 150, 1367-1375.	1.8	93
15	A Transcriptional Activator, AoXInR, Controls the Expression of Genes Encoding Xylanolytic Enzymes in Aspergillus oryzae. Fungal Genetics and Biology, 2002, 35, 157-169.	2.1	90
16	Metabolic engineering of Rhizopus oryzae for the production of platform chemicals. Applied Microbiology and Biotechnology, 2012, 94, 875-886.	3.6	90
17	Purification and Characterization of Two Different α- <scp>l</scp> -Rhamnosidases, RhaA and RhaB, from <i>Aspergillus aculeatus</i> . Applied and Environmental Microbiology, 2001, 67, 2230-2234.	3.1	88
18	Characterization of Galactosidases from Aspergillus niger: Purification of a Novel α-Galactosidase Activity. Enzyme and Microbial Technology, 1998, 22, 383-390.	3.2	85

LEO H DE GRAAFF

#	Article	IF	CITATIONS
19	<scp>d</scp> -Xylose Concentration-Dependent Hydrolase Expression Profiles and the Function of CreA and XlnR in Aspergillus niger. Applied and Environmental Microbiology, 2012, 78, 3145-3155.	3.1	80
20	Cloning and characterization of the abfB gene coding for the major α-l-arabinofuranosidase (ABF B) of Aspergillus niger. Current Genetics, 1993, 24, 525-532.	1.7	79
21	Cloning of the Trichoderma reesei pyrG gene and its use as a homologous marker for a high-frequency transformation system. Current Genetics, 1990, 18, 447-451.	1.7	76
22	Induction of glucose oxidase, catalase, and lactonase in Aspergillus niger. Current Genetics, 1993, 24, 408-416.	1.7	65
23	Construction of a Genetically Modified Wine YeastStrain Expressing the Aspergillus aculeatus rhaA Gene,Encoding an α- l -Rhamnosidase ofEnologicalInterest. Applied and Environmental Microbiology, 2003, 69, 7558-7562.	3.1	64
24	Molecular Cloning and Transcriptional Regulation of the Aspergillus nidulans xInD Gene Encoding a β-Xylosidase. Applied and Environmental Microbiology, 1998, 64, 1412-1419.	3.1	64
25	Cloning of the Aspergillus niger gene encoding α-l-arabinofuranosidase A. Applied Microbiology and Biotechnology, 1993, 39, 335-340.	3.6	58
26	Molecular cloning, expression and structure of the endo-1,5-α-l-arabinase gene of Aspergillus niger. Applied Microbiology and Biotechnology, 1993, 40, 318-326.	3.6	56
27	Proteomics of industrial fungi: trends and insights for biotechnology. Applied Microbiology and Biotechnology, 2011, 89, 225-237.	3.6	53
28	Proteomic Analysis of the Secretory Response of Aspergillus niger to D-Maltose and D-Xylose. PLoS ONE, 2011, 6, e20865.	2.5	47
29	Production of Bioavailable Flavonoid Glucosides in Fruit Juices and Green Tea by Use of Fungal α-l-Rhamnosidases. Journal of Agricultural and Food Chemistry, 2004, 52, 6136-6142.	5.2	43
30	The Aspergillus niger multicopper oxidase family: analysis and overexpression of laccase-like encoding genes. Microbial Cell Factories, 2011, 10, 78.	4.0	43
31	Shotgun Proteomics of <i>Aspergillus niger</i> Microsomes upon <scp>d</scp> -Xylose Induction. Applied and Environmental Microbiology, 2010, 76, 4421-4429.	3.1	39
32	Aspergillus niger Protein EstA Defines a New Class of Fungal Esterases within the α/β Hydrolase Fold Superfamily of Proteins. Structure, 2004, 12, 677-687.	3.3	29
33	Overexpression of the Aspergillus niger GatA transporter leads to preferential use of D-galacturonic acid over D-xylose. AMB Express, 2014, 4, 66.	3.0	27
34	Analysis of Variance Components Reveals the Contribution of Sample Processing to Transcript Variation. Applied and Environmental Microbiology, 2009, 75, 2414-2422.	3.1	25
35	A novel class of fungal lipoxygenases. Applied Microbiology and Biotechnology, 2014, 98, 1261-1270.	3.6	25
36	Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger. Microbial Cell Factories, 2012, 11, 165.	4.0	24

LEO H DE GRAAFF

#	Article	IF	CITATIONS
37	Industrial potential of lipoxygenases. Critical Reviews in Biotechnology, 2016, 36, 665-674.	9.0	23
38	Efficient cloning system for construction of gene silencing vectors in Aspergillus niger. Applied Microbiology and Biotechnology, 2008, 80, 917-924.	3.6	22
39	Cloning and characterisation of genes (pkc1 andpkcA) encoding protein kinase C homologues fromTrichoderma reesei andAspergillus niger. Molecular Genetics and Genomics, 1996, 250, 17-28.	2.4	21
40	Structure and function of Aspergillus niger laccase McoG. Biocatalysis, 2017, 3, 1-21.	2.3	18
41	Overexpression of a modified 6-phosphofructo-1-kinase results in an increased itaconic acid productivity in Aspergillus niger. AMB Express, 2013, 3, 57.	3.0	17
42	Identification of modules in Aspergillus niger by gene co-expression network analysis. Fungal Genetics and Biology, 2010, 47, 539-550.	2.1	15
43	Comparative proteomics of <i>Rhizopus delemar</i> ATCC 20344 unravels the role of amino acid catabolism in fumarate accumulation. PeerJ, 2017, 5, e3133.	2.0	14
44	Production of cyanophycin in Rhizopus oryzae through the expression of a cyanophycin synthetase encoding gene. Applied Microbiology and Biotechnology, 2012, 93, 1167-1174.	3.6	13
45	Modeling and analysis of the dynamic behavior of the XInR regulon in Aspergillus niger. BMC Systems Biology, 2011, 5, S14.	3.0	11
46	Pathway transfer in fungi. Bioengineered, 2014, 5, 335-339.	3.2	10
47	Heterologous expression of Gaeumannomyces graminis lipoxygenase in Aspergillus nidulans. AMB Express, 2014, 4, 65.	3.0	7
48	Evaluation of Design Strategies for Time Course Experiments in Genetic Networks: Case Study of the XInR Regulon in Aspergillus niger. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1316-1325.	3.0	4
49	Toolkit for Visualization of the Cellular Structure and Organelles in <i>Aspergillus niger</i> . ACS Synthetic Biology, 2014, 3, 995-998.	3.8	3
50	(27) A. niger protein "EstAâ€; perhaps a new electrotactin, defines a new class of fungal esterases within the α/β hydrolase fold superfamily. Chemico-Biological Interactions, 2005, 157-158, 395-396.	4.0	0
51	Evaluation of design strategies for time course experiments in genetic networks. , 2011, , .		0