Ruth M Barrientos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1064512/publications.pdf

Version: 2024-02-01

61 5,566 papers citations

94433 37 h-index 58 g-index

62 all docs 62 docs citations 62 times ranked 6418 citing authors

#	Article	IF	CITATIONS
1	The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain, Behavior, and Immunity, 2020, 87, 53-54.	4.1	405
2	mRNA up-regulation of MHC II and pivotal pro-inflammatory genes in normal brain aging. Neurobiology of Aging, 2006, 27, 717-722.	3.1	291
3	Peripheral infection and aging interact to impair hippocampal memory consolidation. Neurobiology of Aging, 2006, 27, 723-732.	3.1	288
4	The Role of the Dorsal Hippocampus in the Acquisition and Retrieval of Context Memory Representations. Journal of Neuroscience, 2004, 24, 2431-2439.	3.6	287
5	Neuroinflammation in the normal aging hippocampus. Neuroscience, 2015, 309, 84-99.	2.3	269
6	Hippocampal formation supports conditioning to memory of a context Behavioral Neuroscience, 2002, 116, 530-538.	1.2	227
7	Memory for context is impaired by a post context exposure injection of interleukin-1 beta into dorsal hippocampus. Behavioural Brain Research, 2002, 134, 291-298.	2.2	225
8	Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist. Neuroscience, 2003, 121, 847-853.	2.3	218
9	Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain, Behavior, and Immunity, 2015, 45, 171-179.	4.1	207
10	Time course of hippocampal IL-1 \hat{l}^2 and memory consolidation impairments in aging rats following peripheral infection. Brain, Behavior, and Immunity, 2009, 23, 46-54.	4.1	199
11	Intracisternal Interleukin-1 Receptor Antagonist Prevents Postoperative Cognitive Decline and Neuroinflammatory Response in Aged Rats. Journal of Neuroscience, 2012, 32, 14641-14648.	3.6	196
12	BDNF mRNA expression in rat hippocampus following contextual learning is blocked by intrahippocampal IL- $1^{\hat{1}^2}$ administration. Journal of Neuroimmunology, 2004, 155, 119-126.	2.3	177
13	Food for thought: how nutrition impacts cognition and emotion. Npj Science of Food, $2017, 1, 7$.	5. 5	154
14	Spinal gap junctions: Potential involvement in pain facilitation. Journal of Pain, 2004, 5, 392-405.	1.4	144
15	High-fat diet and aging interact to produce neuroinflammation and impair hippocampal- and amygdalar-dependent memory. Neurobiology of Aging, 2017, 58, 88-101.	3.1	138
16	Hippocampal formation supports conditioning to memory of a context Behavioral Neuroscience, 2002, 116, 530-538.	1.2	130
17	Little Exercise, Big Effects: Reversing Aging and Infection-Induced Memory Deficits, and Underlying Processes. Journal of Neuroscience, 2011, 31, 11578-11586.	3.6	128
18	High-fat diet consumption disrupts memory and primes elevations in hippocampal IL- $1\hat{l}^2$, an effect that can be prevented with dietary reversal or IL-1 receptor antagonism. Brain, Behavior, and Immunity, 2014, 42, 22-32.	4.1	127

#	Article	IF	CITATIONS
19	Memory for context is impaired by injecting anisomycin into dorsal hippocampus following context exploration. Behavioural Brain Research, 2002, 134, 299-306.	2.2	118
20	Aging and a Peripheral Immune Challenge Interact to Reduce Mature Brain-Derived Neurotrophic Factor and Activation of TrkB, PLC \hat{I}^31 , and ERK in Hippocampal Synaptoneurosomes. Journal of Neuroscience, 2011, 31, 4274-4279.	3.6	108
21	The Alarmin HMGB1 Mediates Age-Induced Neuroinflammatory Priming. Journal of Neuroscience, 2016, 36, 7946-7956.	3.6	103
22	Early-life infection leads to altered BDNF and IL- $1\hat{l}^2$ mRNA expression in rat hippocampus following learning in adulthood. Brain, Behavior, and Immunity, 2008, 22, 451-455.	4.1	94
23	Aging sensitizes rapidly isolated hippocampal microglia to LPS ex vivo. Journal of Neuroimmunology, 2010, 226, 181-184.	2.3	88
24	IL-1RA blocks E. coli-induced suppression of Arc and long-term memory in aged F344×BN F1 rats. Brain, Behavior, and Immunity, 2010, 24, 254-262.	4.1	72
25	Expression of fibroblast growth factor-2 and brain-derived neurotrophic factor mRNA in the medial prefrontal cortex and hippocampus after uncontrollable or controllable stress. Neuroscience, 2007, 144, 1219-1228.	2.3	69
26	Snake venom phospholipase A2s (Asp49 and Lys49) induce mechanical allodynia upon peri-sciatic administration: involvement of spinal cord glia, proinflammatory cytokines and nitric oxide. Pain, 2004, 108, 180-191.	4.2	66
27	Aging-related changes in neuroimmune-endocrine function: Implications for hippocampal-dependent cognition. Hormones and Behavior, 2012, 62, 219-227.	2.1	66
28	Aging and infection reduce expression of specific brain-derived neurotrophic factor mRNAs in hippocampus. Neurobiology of Aging, 2012, 33, 832.e1-832.e14.	3.1	66
29	Greater glucocorticoid receptor activation in hippocampus of aged rats sensitizes microglia. Neurobiology of Aging, 2015, 36, 1483-1495.	3.1	62
30	Synaptic Correlates of Increased Cognitive Vulnerability with Aging: Peripheral Immune Challenge and Aging Interact to Disrupt Theta-Burst Late-Phase Long-Term Potentiation in Hippocampal Area CA1. Journal of Neuroscience, 2010, 30, 7598-7603.	3.6	60
31	Prostaglandins are necessary and sufficient to induce contextual fear learning impairments after interleukin-1 beta injections into the dorsal hippocampus. Neuroscience, 2007, 150, 754-763.	2.3	58
32	Characterization of the sickness response in young and aging rats following E. coli infection. Brain, Behavior, and Immunity, 2009, 23, 450-454.	4.1	57
33	Evolution of the Human Diet and Its Impact on Gut Microbiota, Immune Responses, and Brain Health. Nutrients, 2021, 13, 196.	4.1	57
34	Glucocorticoids Mediate Short-Term High-Fat Diet Induction of Neuroinflammatory Priming, the NLRP3 Inflammasome, and the Danger Signal HMGB1. ENeuro, 2016, 3, ENEURO.0113-16.2016.	1.9	54
35	Diminished circadian rhythms in hippocampal microglia may contribute to age-related neuroinflammatory sensitization. Neurobiology of Aging, 2016, 47, 102-112.	3.1	54
36	High-fat diet worsens the impact of aging on microglial function and morphology in a region-specific manner. Neurobiology of Aging, 2019, 74, 121-134.	3.1	52

#	Article	IF	CITATIONS
37	Fatty food, fatty acids, and microglial priming in the adult and aged hippocampus and amygdala. Brain, Behavior, and Immunity, 2020, 89, 145-158.	4.1	47
38	Memory impairments in healthy aging: Role of aging-induced microglial sensitization., 2010, 1, 212-231.		44
39	Elevated Expression of MiR-17 in Microglia of Alzheimer's Disease Patients Abrogates Autophagy-Mediated Amyloid-β Degradation. Frontiers in Immunology, 2021, 12, 705581.	4.8	34
40	Postoperative cognitive dysfunction is made persistent with morphine treatment in aged rats. Neurobiology of Aging, 2021, 98, 214-224.	3.1	33
41	Neuroimmunology of the female brain across the lifespan: Plasticity to psychopathology. Brain, Behavior, and Immunity, 2019, 79, 39-55.	4.1	29
42	Neonatal bacterial infection alters fever to live and simulated infections in adulthood. Psychoneuroendocrinology, 2010, 35, 369-381.	2.7	28
43	Identification of a novel inflammation-protective locus in the Fischer rat. Mammalian Genome, 1999, 10, 362-365.	2.2	27
44	Prior laparotomy or corticosterone potentiates lipopolysaccharide-induced fever and sickness behaviors. Journal of Neuroimmunology, 2011, 239, 53-60.	2.3	23
45	Voluntary exercise as an anti-neuroinflammatory therapeutic. Brain, Behavior, and Immunity, 2011, 25, 1061-1062.	4.1	20
46	Reductions in Frontocortical Cytokine Levels are Associated with Long-Lasting Alterations in Reward Valuation after Methamphetamine. Neuropsychopharmacology, 2015, 40, 1234-1242.	5.4	18
47	IL-1RA injected intra-cisterna magna confers extended prophylaxis against lipopolysaccharide-induced neuroinflammatory and sickness responses. Journal of Neuroimmunology, 2012, 252, 33-39.	2.3	17
48	Lifestyle modifications with anti-neuroinflammatory benefits in the aging population. Experimental Gerontology, 2020, 142, 111144.	2.8	16
49	Experimental autoimmune encephalopathy (EAE)-induced hippocampal neuroinflammation and memory deficits are prevented with the non-opioid TLR2/TLR4 antagonist (+)-naltrexone. Behavioural Brain Research, 2021, 396, 112896.	2.2	16
50	The Perfect Cytokine Storm: How Peripheral Immune Challenges Impact Brain Plasticity & Memory Function in Aging. Brain Plasticity, 2021, 7, 47-60.	3.5	16
51	Dietary DHA prevents cognitive impairment and inflammatory gene expression in aged male rats fed a diet enriched with refined carbohydrates. Brain, Behavior, and Immunity, 2021, 98, 198-209.	4.1	15
52	Aging and an Immune Challenge Interact to Produce Prolonged, but Not Permanent, Reductions in Hippocampal L-LTP and mBDNF in a Rodent Model with Features of Delirium. ENeuro, 2018, 5, ENEURO.0009-18.2018.	1.9	15
53	IL-1 receptor type I gene expression in the amygdala of inflammatory susceptible Lewis and inflammatory resistant Fischer rats. Journal of Neuroimmunology, 2001, 121, 32-39.	2.3	13
54	Collapsin Response Mediator Proteins: Novel Targets for Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 77, 949-960.	2.6	9

#	Article	IF	CITATIONS
55	Divergent effects of brain interleukin-1ß in mediating fever, lethargy, anorexia and conditioned fear memory. Behavioural Brain Research, 2017, 324, 155-163.	2.2	8
56	The role of hepatic and splenic macrophages in E. coli-induced memory impairments in aged rats. Brain, Behavior, and Immunity, 2015, 43, 60-67.	4.1	7
57	Stable, long-term, spatial memory in young and aged rats achieved with a one day Morris water maze training protocol. Learning and Memory, 2016, 23, 699-702.	1.3	7
58	Exclusion of Angiotensin I-Converting Enzyme as a Candidate Gene Involved In Exudative Inflammatory Resistance in F344/N Rats. Molecular Medicine, 2000, 6, 319-331.	4.4	6
59	Mammary tumors suppress aging-induced neuroinflammation in female Balb/c mice. Comprehensive Psychoneuroendocrinology, 2020, 1-2, 100002.	1.7	4
60	The role of microglia in neurogenesis: exercise and aging as cofactors. Future Neurology, 2012, 7, 671-674.	0.5	0
61	Reply to the Letter to the Editor: Regional differences in dietary use of immune-modulating catechins should be investigated regarding COVID-19. Brain, Behavior, and Immunity, 2020, 89, 528.	4.1	0