
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10639524/publications.pdf Version: 2024-02-01

PAUL HICCINS

#	Article	IF	CITATIONS
1	Cancer-Associated Fibroblasts: Mechanisms of Tumor Progression and Novel Therapeutic Targets. Cancers, 2022, 14, 1231.	3.7	44
2	Editorial: The Role of Steroid Hormones and Growth Factors in Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 887529.	3.7	1
3	Hyaluronan, Transforming Growth Factor β, and Extra Domain A-Fibronectin: A Fibrotic Triad. Advances in Wound Care, 2021, 10, 137-152.	5.1	17
4	Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities. Clinical Science, 2021, 135, 275-303.	4.3	52
5	PAlâ€1 induction during kidney injury promotes fibrotic epithelial dysfunction via deregulation of klotho, p53, and TGFâ€l²1â€receptor signaling. FASEB Journal, 2021, 35, e21725.	0.5	21
6	The Genomic Response to TGF-β1 Dictates Failed Repair and Progression of Fibrotic Disease in the Obstructed Kidney. Frontiers in Cell and Developmental Biology, 2021, 9, 678524.	3.7	9
7	Editorial: Premature Aging and Senescence in Renal Fibrosis. Frontiers in Pharmacology, 2021, 12, 734892.	3.5	1
8	Heat Shock Protein 27, a Novel Downstream Target of Collagen Type XI alpha 1, Synergizes with Fatty Acid Oxidation to Confer Cisplatin Resistance in Ovarian Cancer Cells. Cancers, 2021, 13, 4855.	3.7	12
9	Protein phosphatase Mg ²⁺ /Mn ²⁺ dependentâ€IA and PTEN deregulation in renal fibrosis: Novel mechanisms and coâ€dependency of expression. FASEB Journal, 2020, 34, 2641-2656.	0.5	11
10	AQP2: Mutations Associated with Congenital Nephrogenic Diabetes Insipidus and Regulation by Post-Translational Modifications and Protein-Protein Interactions. Cells, 2020, 9, 2172.	4.1	22
11	Loss of Histone H3 K79 Methyltransferase Dot1l Facilitates Kidney Fibrosis by Upregulating Endothelin 1 through Histone Deacetylase 2. Journal of the American Society of Nephrology: JASN, 2020, 31, 337-349.	6.1	33
12	The TGF-β1/p53/PAI-1 Signaling Axis in Vascular Senescence: Role of Caveolin-1. Biomolecules, 2019, 9, 341.	4.0	36
13	TGFâ€Î²1–p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications. FASEB Journal, 2019, 33, 10596-10606.	0.5	17
14	Racâ€GTPase promotes fibrotic TGFâ€Î²1 signaling and chronic kidney disease <i>via</i> EGFR, p53, and Hippo/YAP/TAZ pathways. FASEB Journal, 2019, 33, 9797-9810.	0.5	55
15	Molecular biomarkers of Graves' ophthalmopathy. Experimental and Molecular Pathology, 2019, 106, 1-6.	2.1	25
16	Deregulation of Hippo–TAZ pathway during renal injury confers a fibrotic maladaptive phenotype. FASEB Journal, 2018, 32, 2644-2657.	0.5	65
17	TGF-β1/p53 signaling in renal fibrogenesis. Cellular Signalling, 2018, 43, 1-10.	3.6	110
18	Deregulation of Negative Controls on TGF-β1 Signaling in Tumor Progression. Cancers, 2018, 10, 159.	3.7	60

#	Article	IF	CITATIONS
19	The Cytoskeletal Network Regulates Expression of the Profibrotic Genes PAI-1 and CTGF in Vascular Smooth Muscle Cells. Advances in Pharmacology, 2018, 81, 79-94.	2.0	4
20	SerpinE1., 2018,, 4902-4913.		1
21	Accredited translational medicine centre: Human renal fibrotic disease: Translational research at the Center for Cell Biology and Cancer Research (CCBCR), Albany Medical College, Albany, NY. European Journal of Molecular and Clinical Medicine, 2017, 2, 51.	0.1	0
22	Development and Diseases of the Collecting Duct System. Results and Problems in Cell Differentiation, 2017, 60, 165-203.	0.7	7
23	Integration of Canonical and Noncanonical Pathways in TLR4 Signaling: Complex Regulation of the Wound Repair Program. Advances in Wound Care, 2017, 6, 320-329.	5.1	27
24	Insights into cellular and molecular basis for urinary tract infection in autosomal-dominant polycystic kidney disease. American Journal of Physiology - Renal Physiology, 2017, 313, F1077-F1083.	2.7	6
25	Small molecule PAI-1 functional inhibitor attenuates vascular smooth muscle cell migration and survival: Implications for the therapy of vascular disease. European Journal of Molecular and Clinical Medicine, 2017, 2, 16.	0.1	0
26	Disulfide bond disrupting agents activate the unfolded protein response in EGFR- and HER2-positive breast tumor cells. Oncotarget, 2017, 8, 28971-28989.	1.8	11
27	CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Research, 2016, 18, 80.	5.0	25
28	Loss of expression of protein phosphatase magnesiumâ€dependent 1A during kidney injury promotes fibrotic maladaptive repair. FASEB Journal, 2016, 30, 3308-3320.	0.5	21
29	SerpinE1. , 2016, , 1-11.		0
30	Balancing AhR-Dependent Pro-Oxidant and Nrf2-Responsive Anti-Oxidant Pathways in Age-Related Retinopathy: Is SERPINE1 Expression a Therapeutic Target in Disease Onset and Progression?. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2015, 08, 101.	0.1	7
31	Inhibition of SERPINE1 Function Attenuates Wound Closure in Response to Tissue Injury: A Role for PAI-1 in Re-Epithelialization and Granulation Tissue Formation. Journal of Developmental Biology, 2015, 3, 11-24.	1.7	10
32	Tumor suppressor ataxia telangiectasia mutated functions downstream of TGFâ€Ĥ²1 in orchestrating profibrotic responses. FASEB Journal, 2015, 29, 1258-1268.	0.5	31
33	A small molecule PAI-1 functional inhibitor attenuates neointimal hyperplasia and vascular smooth muscle cell survival by promoting PAI-1 cleavage. Cellular Signalling, 2015, 27, 923-933.	3.6	19
34	Targeted Inhibition of PAI-1 Activity Impairs Epithelial Migration and Wound Closure Following Cutaneous Injury. Advances in Wound Care, 2015, 4, 321-328.	5.1	31
35	Loss of tumour suppressor <scp>PTEN</scp> expression in renal injury initiates <scp>SMAD3</scp> ― and p53â€dependent fibrotic responses. Journal of Pathology, 2015, 236, 421-432.	4.5	55
36	Chemical Antagonists of Plasminogen Activator Inhibitor-1: Mechanisms of Action and Therapeutic Potential in Vascular Disease. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2014, 08, .	0.1	10

PAUL J HIGGINS

#	Article	IF	CITATIONS
37	The Basic Helixâ€Loopâ€Helix/Leucine Zipper Transcription Factor USF2 Integrates Serumâ€Induced PAIâ€1 Expression and Keratinocyte Growth. Journal of Cellular Biochemistry, 2014, 115, 1840-1847.	2.6	10
38	SERPINE1: A Molecular Switch in the Proliferation-Migration Dichotomy in Wound-"Activated― Keratinocytes. Advances in Wound Care, 2014, 3, 281-290.	5.1	67
39	Redox control of p53 in the transcriptional regulation of TGF-β1 target genes through SMAD cooperativity. Cellular Signalling, 2014, 26, 1427-1436.	3.6	86
40	Abstract B27: SERPINE1 expression is required for HDACi-induced proliferative arrest in ras-transformed epithelial cells. , 2014, , .		0
41	Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species. Cellular Signalling, 2013, 25, 2198-2209.	3.6	136
42	TGF-β signaling in tissue fibrosis: Redox controls, target genes and therapeutic opportunities. Cellular Signalling, 2013, 25, 264-268.	3.6	285
43	Drugging the undruggable: Transcription therapy for cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2013, 1835, 76-85.	7.4	80
44	Small Molecule Targeting of PAI-1 Function: A New Therapeutic Approach for Treatment of Vascular Stenosis. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2013, 07, .	0.1	3
45	Enhancing the Function of CD34+ Cells by Targeting Plasminogen Activator Inhibitor-1. PLoS ONE, 2013, 8, e79067.	2.5	12
46	Complex Regulation of the Pericellular Proteolytic Microenvironment during Tumor Progression and Wound Repair: Functional Interactions between the Serine Protease and Matrix Metalloproteinase Cascades. Biochemistry Research International, 2012, 2012, 1-8.	3.3	15
47	Ureteral Obstruction-Induced Renal Fibrosis: An In Vivo Platform for Mechanistic Discovery and Therapeutic Intervention. Cell & Developmental Biology, 2012, 01, .	0.3	2
48	<scp>SERPINE</scp> 1 expression discriminates siteâ€specific metastasis in human melanoma. Experimental Dermatology, 2012, 21, 551-554.	2.9	40
49	TGF-β1 → SMAD/p53/USF2 → PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis. Cell and Tissue Research, 2012, 347, 117-128.	2.9	129
50	Low Molecular Weight Antagonists of Plasminogen Activator Inhibitor-1: Therapeutic Potential in Cardiovascular Disease. Molecular Medicine & Therapeutics, 2012, 01, 101.	1.0	12
51	Epithelial "Plasticity―in Tumor Progression and Wound Repair: Potential Therapeutic Targets in the Stromal Microenvironment. Cell Biology: Research & Therapy, 2012, 01, .	0.2	0
52	PAI-1 Expression Is Required for HDACi-Induced Proliferative Arrest in <i>ras</i> -Transformed Renal Epithelial Cells. International Journal of Cell Biology, 2011, 2011, 1-8.	2.5	8
53	PAI-1: An Integrator of Cell Signaling and Migration. International Journal of Cell Biology, 2011, 2011, 1-9.	2.5	155
54	Redox-Induced Src Kinase and Caveolin-1 Signaling in TGF-β1-Initiated SMAD2/3 Activation and PAI-1 Expression. PLoS ONE, 2011, 6, e22896.	2.5	60

#	Article	IF	CITATIONS
55	Linking cell structure to gene regulation: Signaling events and expression controls on the model genes PAI-1 and CTGF. Cellular Signalling, 2010, 22, 1413-1419.	3.6	49
56	Upstream stimulatory factorâ€2 mediates quercetinâ€induced suppression of PAIâ€1 gene expression in human endothelial cells. Journal of Cellular Biochemistry, 2010, 111, 720-726.	2.6	22
57	Transient Inhibition of Transforming Growth Factor-β1 in Human Diabetic CD34+ Cells Enhances Vascular Reparative Functions. Diabetes, 2010, 59, 2010-2019.	0.6	35
58	PAI-1 Mediates the TGF-β1+EGF-Induced "Scatter―Response in Transformed Human Keratinocytes. Journal of Investigative Dermatology, 2010, 130, 2179-2190.	0.7	44
59	TGF-β 1-Induced Expression of the Poor Prognosis SERPINE1/PAI-1 Gene Requires EGFR Signaling: A New Target for Anti-EGFR Therapy. Journal of Oncology, 2009, 2009, 1-6.	1.3	25
60	PAI-1 Regulates the Invasive Phenotype in Human Cutaneous Squamous Cell Carcinoma. Journal of Oncology, 2009, 2009, 1-12.	1.3	26
61	TGF-β1 + EGF-Initiated Invasive Potential in Transformed Human Keratinocytes Is Coupled to a Plasmin/MMP-10/MMP-1–Dependent Collagen Remodeling Axis: Role for PAI-1. Cancer Research, 2009, 69, 4081-4091.	0.9	61
62	Differential requirement for MEK/ERK and SMAD signaling in PAI-1 and CTGF expression in response to microtubule disruption. Cellular Signalling, 2009, 21, 986-995.	3.6	40
63	TGF-β1 -Induced Expression of the Anti-Apoptotic PAI-1 Protein Requires EGFR Signaling. Cell Communication Insights, 2009, 2, 1-11.	1.0	11
64	SERPINE1 (PAI-1) is deposited into keratinocyte migration "trails―and required for optimal monolayer wound repair. Archives of Dermatological Research, 2008, 300, 303-310.	1.9	70
65	SERPINE1 (PAI-1) Is a Prominent Member of the Early G0 → G1 Transition "Wound Repair―Transcriptome in p53 Mutant Human Keratinocytes. Journal of Investigative Dermatology, 2008, 128, 749-753.	0.7	22
66	TGF-β1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscle cells requires pp60c-src/EGFRY845 and Rho/ROCK signaling. Journal of Molecular and Cellular Cardiology, 2008, 44, 527-538.	1.9	89
67	Integration of non-SMAD and SMAD signaling in TGF-β1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells. Thrombosis and Haemostasis, 2008, 100, 976-983.	3.4	98
68	Integration of non-SMAD and SMAD signaling in TGF-beta1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells. Thrombosis and Haemostasis, 2008, 100, 976-83.	3.4	56
69	Regulation of Extracellular Matrix Remodeling following Transforming Growth Factor-β1/Epidermal Growth Factor-Stimulated Epithelial-Mesenchymal Transition in Human Premalignant Keratinocytes. Cells Tissues Organs, 2007, 185, 116-122.	2.3	60
70	PAI-1 is a Critical Upstream Regulator of the TGF-β1/EGF-Induced Invasive Phenotype in Mutant p53 Human Cutaneous Squamous Cell Carcinoma. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-8.	3.0	29
71	TGF-β1-induced PAI-1 expression is E box/USF-dependent and requires EGFR signaling. Experimental Cell Research, 2006, 312, 1093-1105.	2.6	61
72	Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nature Cell Biology, 2006, 8, 877-884.	10.3	515

#	Article	IF	CITATIONS
73	PAI-1 transcriptional regulation during the G0 → G1 transition in human epidermal keratinocytes. Journa of Cellular Biochemistry, 2006, 99, 495-507.	al 2.6	31
74	The TGF-β1/Upstream Stimulatory Factor-Regulated PAI-1 Gene: Potential Involvement and a Therapeutic Target in Alzheimer's Disease. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-6.	3.0	17
75	Upstream stimulatory factor regulates E box-dependent PAI-1 transcription in human epidermal keratinocytes. Journal of Cellular Physiology, 2005, 203, 156-165.	4.1	38
76	Plasminogen activator inhibitor type-1 gene expression and induced migration in TGF-β1-stimulated smooth muscle cells is pp60c-src/MEK-dependent. Journal of Cellular Physiology, 2005, 204, 236-246.	4.1	57
77	087â€ PAI-1 Gene Expression in Wound-Edge Keratinocytes is Upstream Stimulatory Factor-Dependent and Required for Cell Migration. Wound Repair and Regeneration, 2005, 13, A4-A27.	3.0	0
78	PAI-1 expression is required for epithelial cell migration in two distinct phases of in vitro wound repair. Journal of Cellular Physiology, 2004, 200, 297-308.	4.1	75
79	pp60c-src mediates ERK activation/nuclear localization and PAI-1 gene expression in response to cellular deformation. Journal of Cellular Physiology, 2003, 195, 411-420.	4.1	18
80	A Quantifi able In Vitro Model to Assess Effects of PAI-1 Gene Targeting on Epithelial Cell Motility. , 2003, 78, 293-304.		4
81	Epithelial monolayer wounding stimulates binding of USF-1 to an E-box motif in the plasminogen activator inhibitor type 1 gene. Journal of Cell Science, 2002, 115, 3767-3777.	2.0	45
82	Gallium Nitrate Accelerates Partial Thickness Wound Repair and Alters Keratinocyte Integrin Expression to Favor a Motile Phenotype. Journal of Surgical Research, 2002, 103, 134-140.	1.6	13
83	A soluble chimeric inhibitor of C3 and C5 convertases, complement activation blocker-2, prolongs graft survival in pig-to-rhesus monkey heart transplantation. Xenotransplantation, 2002, 9, 125-134.	2.8	25
84	MEK/ERK pathway mediates cell-shape-dependent plasminogen activator inhibitor type 1 gene expression upon drug-induced disruption of the microfilament and microtubule networks. Journal of Cell Science, 2002, 115, 3093-3103.	2.0	41
85	MEK/ERK pathway mediates cell-shape-dependent plasminogen activator inhibitor type 1 gene expression upon drug-induced disruption of the microfilament and microtubule networks. Journal of Cell Science, 2002, 115, 3093-103.	2.0	33
86	Antisense targeting of c-fos transcripts inhibits serum- and TGF-?1-stimulated PAI-1 gene expression and directed motility in renal epithelial cells. Cytoskeleton, 2001, 48, 163-174.	4.4	14
87	TGF-β1-induced PAI-1 gene expression requires MEK activity and cell-to-substrate adhesion. Journal of Cell Science, 2001, 114, 3905-3914.	2.0	113
88	Biomarkers of Human Colonic Cell Growth Are Influenced Differently by a History of Colonic Neoplasia and the Consumption of Acarbose. Journal of Nutrition, 2000, 130, 2718-2725.	2.9	25
89	PAI-1 gene expression is regionally induced in wounded epithelial cell monolayers and required for injury repair. Journal of Cellular Physiology, 2000, 182, 269-280.	4.1	48
90	Targeted Inhibition of Wound-Induced PAI-1 Expression Alters Migration and Differentiation in Human Epidermal Keratinocytes. Experimental Cell Research, 2000, 258, 245-253.	2.6	34

#	Article	IF	CITATIONS
91	Growth State-Dependent Binding of USF-1 to a Proximal Promoter E Box Element in the Rat Plasminogen Activator Inhibitor Type 1 Gene. Experimental Cell Research, 2000, 260, 127-135.	2.6	21
92	A RECOMBINANT SOLUBLE CHIMERIC COMPLEMENT INHIBITOR COMPOSED OF HUMAN CD46 AND CD55 REDUCES ACUTE CARDIAC TISSUE INJURY IN MODELS OF PIG-TO-HUMAN HEART TRANSPLANTATION1, 2. Transplantation, 2000, 69, 2282-2289.	1.0	32
93	Growth state-dependent regulation of plasminogen activator inhibitor type-1 gene expression during epithelial cell stimulation by serum and transforming growth factor-?1. , 1999, 181, 96-106.		31
94	Perturbation of the actin cytoskeleton induces PAI-1 gene expression in cultured epithelial cells independent of substrate anchorage. Cytoskeleton, 1999, 42, 218-229.	4.4	10
95	Attenuation of plasminogen activator inhibitor type-1 promoter activity in serum-stimulated renal epithelial cells by a distal 5? flanking region. Cytoskeleton, 1999, 44, 168-176.	4.4	2
96	Differential Regulation of PAI-1 Gene Expression in Human Fibroblasts Predisposed to a Fibrotic Phenotype. Experimental Cell Research, 1999, 248, 634-642.	2.6	38
97	Increased transcription and modified growth state-dependent expression of the plasminogen activator inhibitor type-1 gene characterize the senescent phenotype in human diploid fibroblasts. Journal of Cellular Physiology, 1998, 174, 90-98.	4.1	25
98	Cell shape-dependent pathway of plasminogen activator inhibitor type-1 gene expression requires cytoskeletal reorganization. Journal of Cellular Physiology, 1998, 176, 293-302.	4.1	11
99	p52PAI-1 gene expression in butyrate-induced flat revertants of v-ras-transformed rat kidney cells: mechanism of induction and involvement in the morphological response. Biochemical Journal, 1997, 321, 431-437.	3.7	13
100	Induced PAI-1 mRNA expression and targeted protein accumulation are early G1 events in serum-stimulated rat kidney cells. , 1997, 170, 8-18.		15
101	PAI-1 Gene Expression Is Growth State-Regulated in Cultured Human Epidermal Keratinocytes during Progression to Confluence and Postwounding. Experimental Cell Research, 1996, 227, 123-134.	2.6	20
102	Localization of urokinase to focal adhesions by human fibrosarcoma cells synthesizing recombinant vitronectin. Biochemistry and Cell Biology, 1996, 74, 899-910.	2.0	14
103	Complex regulation of plasminogen activator inhibitor type-1 (PAI-1) gene expression by serum and substrate adhesion. Biochemical Journal, 1996, 314, 1041-1046.	3.7	48
104	Cytoarchitecture and cell growth control. , 1996, 33, 83-87.		9
105	Differential growth state-dependent regulation of plasminogen activator inhibitor type-1 expression in senescent IMR-90 human diploid fibroblasts. Journal of Cellular Physiology, 1995, 165, 647-657.	4.1	51
106	Abnormal cell proliferation and p52/p35-CSK expression in the colons of aging rats. Experimental Gerontology, 1995, 30, 495-503.	2.8	4
107	Induced expression of p52(PAI-1) in normal rat kidney cells by the microfilament-disrupting agent cytochalasin D. Journal of Cellular Physiology, 1994, 159, 187-195.	4.1	21
108	Expression of plasminogen activator inhibitor type 1 (PAI-1) by HT-29di human large bowel carcinoma cells is modulated as a function of epithelial differentiation. Cancer Letters, 1994, 76, 167-175.	7.2	3

#	Article	IF	CITATIONS
109	Gelsolin Expression in Normal Human Keratinocytes is a Function of Induced Differentiation. Advances in Experimental Medicine and Biology, 1994, 358, 169-181.	1.6	2
110	Control of p52(PAI-1) Gene Expression in Normal and Transformed Rat Kidney Cells: Relationship between p52(PAI-1) Induction and Actin Cytoarchitecture. Advances in Experimental Medicine and Biology, 1994, 358, 215-230.	1.6	11
111	Redistribution of p52(PAI-1) mRNA to the Cytoskeletal Framework Accompanies Increased p52(PAI-1) Expression in Cytochalasin D-Stimulated Rat Kidney Cells. Advances in Experimental Medicine and Biology, 1994, 358, 191-203.	1.6	2
112	Growth state-regulated expression of p52(PAI-1) in normal rat kidney cells. Journal of Cellular Physiology, 1993, 155, 376-384.	4.1	28
113	Interferon Gamma Regulation of De Novo Protein Synthesis in Human Dermal Fibroblasts in Culture Is Anatomic Site Dependent. Journal of Investigative Dermatology, 1993, 100, 288-292.	0.7	31
114	Modulation of SPARC Expression during Butyrate-Induced Terminal Differentiation of Cultured Human Keratinocytes: Regulation via a TGF-β-Dependent Pathway. Experimental Cell Research, 1993, 206, 261-275.	2.6	42
115	Abnormal rectal cell proliferation and p52p35 protein expression in patients with ulcerative colitis. Cancer Letters, 1993, 73, 23-28.	7.2	7
116	Pleotrophic action of interferon gamma in human orbital fibroblasts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1993, 1181, 23-30.	3.8	20
117	Bidimensional gel electrophoretic analysis of protein synthesis and response to interferon-Î ³ in cultured human dermal fibroblasts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1993, 1181, 300-306.	3.8	14
118	Cell shape changes during transition of basal keratinocytes to mature enucleate-cornified envelopes: Modulation of terminal differentiation by fibronectin. Experimental Cell Research, 1992, 201, 126-136.	2.6	13
119	Epidermal cell-shape regulation and subpopulation kinetics during butyrate-induced terminal maturation of normal and SV40-transformed human keratinocytes: Epithelial models of differentiation therapy. International Journal of Cancer, 1990, 46, 733-738.	5.1	19
120	p52 induction by cytochalasin D in rat kidney fibroblasts: Homologies between p52 and plasminogen activator inhibitor type-1. Journal of Cellular Physiology, 1990, 143, 321-329.	4.1	33
121	The substrate-associated protein p5 of porcine endothelial cells: Multiple isoforms, cytoskeletal-like properties and induction by hyperoxic stress. International Journal of Biochemistry & Cell Biology, 1990, 22, 1159-1164.	0.5	5
122	TGF-α and TGF-β expression during sodium-N-butyrate-induced differentiation of human keratinocytes: Evidence for subpopulation-specific up-regulation of TGF-β mRNA in suprabasal cells. Experimental Cell Research, 1990, 191, 286-291.	2.6	25
123	Effects of 1,25-dihydroxyvitamin D3 and its analogs on butyrate-induced differentiation of HT-29 human colonic carcinoma cells and on the reversal of the differentiated phenotype. Archives of Biochemistry and Biophysics, 1990, 276, 415-423.	3.0	55
124	Sodium-N-butyrate induces secretion and substrate accumulation of p52 in kirsten sarcoma virus-transformed rat kidney fibroblasts. International Journal of Biochemistry & Cell Biology, 1989, 21, 31-37.	0.5	21
125	Cytoarchitecture of ras oncogene-expressing tumor cells: Butyrate modulation of substrate adhesion, cytoskeletal actin content and subcellular microfilament distribution. International Journal of Biochemistry & Cell Biology, 1989, 21, 1143-1151.	0.5	5
126	Altered expression and distribution of the cytoskeletal-associated p35 protein in NIH 3T3 cells transformed with the Harvey sarcoma virus v-ras oncogene. International Journal of Biochemistry & Cell Biology, 1989, 21, 609-617.	0.5	3

#	Article	IF	CITATIONS
127	1,25-Dihydroxyvitamin D3-induced growth restriction of cultured epithelial cells derived from a murine hepatic tumor. Biochemical Pharmacology, 1989, 38, 449-453.	4.4	5
128	Enhancement of butyrate-induced differentiation of HT-29 human colon carcinoma cells by 1,25-dihyroxyvitamin D3. Biochemical Pharmacology, 1989, 38, 3859-3865.	4.4	61
129	Cytomatrix reorganization in dimethyl sulfoxide-induced "Qi―substate murine hepatic tumor cells. International Journal of Cancer, 1988, 42, 273-278.	5.1	3
130	Cytoarchitecture of kirsten sarcoma virus-transformed rat kidney fibroblasts: Butyrate-induced reorganization within the actin microfilament network. Journal of Cellular Physiology, 1988, 137, 25-34.	4.1	49
131	Cell Cycle Phase-Specific Perturbation of Hepatic Tumor Cell Growth Kinetics during Short-Term in Vitro Exposure to Ethanol. Alcoholism: Clinical and Experimental Research, 1987, 11, 550-555.	2.4	35
132	Discrimination between the nuclear lamin and intermediate filament (cytokeratin/vimentin) proteins of rat hepatic tumor cells by differential solubility and electrophoretic criteria. International Journal of Biochemistry & Cell Biology, 1987, 19, 1187-1192.	0.5	13
133	Contact-inhibitory factor induces alterations in the distribution and content of specific cytoskeletal elements in an established line of rat hepatic tumor cells. International Journal of Cancer, 1987, 40, 792-801.	5.1	12
134	Cytoskeletal alterations accompany the age-related development of hepatic adenomas in genetically predisposed C3H mice. Age, 1987, 10, 130-136.	3.0	2
135	Transport of UDPG in Vitro and Reversal of Ethanol-Induced Effects. , 1987, , 75-82.		Ο
136	Alterations in growth rate and cell cycle kinetics of rat liver tumor cells cultured in ethanol-containing medium. Biochemical Pharmacology, 1986, 35, 3857-3862.	4.4	26
137	Incubation of Rat Hepatic Tumor Cells with Ethanol and Acetaldehyde in vitro: Effects on Growth Rate, Albumin Secretion and Cellular Protein Content. Digestion, 1986, 34, 161-168.	2.3	22
138	Characterization of the growth inhibited substate induced in murine hepatic tumor cells duringin vitro exposure to dimethylsulfoxide. International Journal of Cancer, 1986, 38, 889-899.	5.1	17
139	Hepatocyte cell cycle transitions during the age-related development of type I hepatic adenomas in the genetically predisposed C3H mouse. Age, 1986, 9, 71-78.	3.0	4
140	Cell cycle compartments of adult mouse hepatocytes identified by flow cytometric analysis of total cellular and nuclear RNA content: Effect of aging on G1 substates. Age, 1985, 8, 122-126.	3.0	9
141	Protein Accumulation in Cultures of Hepatic Tumor Cells Exposed to Dimethylsulfoxide. Oncology, 1984, 41, 338-342.	1.9	7
142	Characterization and Carcinogen Sensitivity of an Established Endothelial-Like Cell Line Derived from Adult Rat Liver Tissue. Oncology, 1984, 41, 331-337.	1.9	5
143	The Effect of Methadone and Naloxone on Cultured Rat Liver Cells. Pathobiology, 1984, 52, 170-175.	3.8	2
144	Histogenesis of benign pleomorphic adenoma (mixed tumor) of the major salivary glands. American Journal of Surgical Pathology, 1984, 8, 803-820.	3.7	199

#	Article	IF	CITATIONS
145	[5] Preparation of polyclonal antisera to tumor-associated antigens using agarose-entrapped immune complexes as immunogens. Methods in Enzymology, 1983, 93, 78-83.	1.0	1
146	Dimethylsulfoxide-Induced Alterations in the Growth Properties and Protein Composition of in vitro-Propagated Murine Hepatoma Cells. Oncology, 1982, 39, 325-330.	1.9	12
147	Response of Mouse Liver Tumor Cells to the Differentiation-Inducing Agent Dimethylsulfoxide. Pharmacology, 1982, 25, 170-176.	2.2	7
148	Alpha-Fetoprotein and Albumin Synthesis by Heterotransplanted Rat Liver Tumor Cells. Pathobiology, 1981, 49, 68-77.	3.8	0
149	Presence of Anti-Î ³ -FA-Reactive Antigens in Spontaneous and Carcinogen-Induced Malignancies of Experimental Animals. Oncology, 1981, 38, 340-345.	1.9	2
150	Intermediate-Sized Filaments in Cultured Rat Liver Tumor Cells With Mallory Body-Like Cytoplasm Abnormalities234. Journal of the National Cancer Institute, 1980, 64, 323-333.	6.3	25
151	Enhanced albumin production by malignantly transformed hepatocytes during in vitro exposure to dimethylsulfoxide. Nucleic Acids and Protein Synthesis, 1980, 610, 174-180.	1.7	33
152	IN VIVO-IN VITRO RAT LIVER CARCINOGENESIS: MODIFICATIONS IN PROTEIN SYNTHESIS AND ULTRASTRUCTURE*. Annals of the New York Academy of Sciences, 1980, 349, 357-372.	3.8	21
153	Differential association of fetal antigen with hepatoma tissue grown in vivo and in vitro. European Journal of Cancer, 1979, 15, 423-431.	0.9	13
154	Heterogeneity, immunological comparison and concentration profiles of alpha-fetoproteins derived from late-gestational and early postnatal mouse tissue. Journal of Reproductive Immunology, 1979, 1, 75-87.	1.9	12
155	A fetal antigen in a mouse fibrosarcoma with possible cross-reactivity with an adult mouse skin component. European Journal of Cancer, 1978, 14, 147-152.	0.9	6
156	The Galápagos Iguanas: Models of Reptilian Differentiation. BioScience, 1978, 28, 512-515.	4.9	10
157	In vivo initiated rat liver carcinogenesis studied in vitro; formation of alcoholic hyaline-type bodies. Cancer Letters, 1977, 3, 145-150.	7.2	12
158	Immunodiffusion comparisons of the serum albumins of marine and land iguanas from different islands in the Galapagos Archipelago. Canadian Journal of Zoology, 1977, 55, 1389-1392.	1.0	5
159	Comparative immunology of Galapagos iguana hemoglobins. The Journal of Experimental Zoology, 1975, 193, 391-397.	1.4	7
160	Galapagos iguanas:Amblyrhynchus andConolophus serum protein relationships. The Journal of Experimental Zoology, 1974, 189, 255-259.	1.4	7
161	A comparative immunochemical study of the serum proteins of several galapagos iguanids. Comparative Biochemistry and Physiology A, Comparative Physiology, 1974, 49, 347-355.	0.6	12