
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/106385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nose-to-brain delivery of simvastatin mediated by chitosan-coated lipid-core nanocapsules allows for the treatment of glioblastoma in vivo. International Journal of Pharmaceutics, 2022, 616, 121563.	5.2	8
2	IgG functionalized polymeric nanoparticles for oral insulin administration. International Journal of Pharmaceutics, 2022, 622, 121829.	5.2	7
3	Therapeutic implementation in arterial thrombosis with pulmonary administration of fucoidan microparticles containing acetylsalicylic acid. International Journal of Pharmaceutics, 2022, 622, 121841.	5.2	2
4	Chemobrain in Breast Cancer: Mechanisms, Clinical Manifestations, and Potential Interventions. Drug Safety, 2022, 45, 601-621.	3.2	10
5	Pharmaceutical Nanocarriers. , 2022, , 802-817.		0
6	Passive Targeting and the Enhanced Permeability and Retention (EPR) Effect. , 2022, , 753-766.		0
7	Pharmaceutical Nanocarrier Characterization. , 2022, , 793-802.		0
8	Active Targeting of Nanocarriers. , 2022, , 68-80.		0
9	Drug Release from Pharmaceutical Nanocarriers. , 2022, , 419-428.		0
10	Evaluation of an Efficient and Skin-Adherent Semisolid Sunscreen Nanoformulation. Skin Pharmacology and Physiology, 2022, 35, 291-298.	2.5	3
11	Triclosan and âº-bisabolol–loaded nanocapsule functionalized with ascorbic acid as a dry powder formulation against A549 lung cancer cells. Journal of Drug Delivery Science and Technology, 2022, 74, 103463.	3.0	0
12	Innovative hydrogel containing polymeric nanocapsules loaded with phloretin: Enhanced skin penetration and adhesion. Materials Science and Engineering C, 2021, 120, 111681.	7.3	17
13	Pharmaceutical Nanocarriers. , 2021, , 1-16.		1
14	Active Targeting of Nanocarriers. , 2021, , 1-13.		3
15	Drug Release from Pharmaceutical Nanocarriers. , 2021, , 1-11.		0
16	Pharmaceutical Nanocarrier Characterization. , 2021, , 1-10.		0
17	Passive Targeting and the Enhanced Permeability and Retention (EPR) Effect. , 2021, , 1-13.		4
18	Folic Acid-Doxorubicin-Double-Functionalized-Lipid-Core Nanocapsules: Synthesis, Chemical Structure Elucidation, and Cytotoxicity Evaluation on Ovarian (OVCAR-3) and Bladder (T24) Cancer Cell Lines. Pharmaceutical Research, 2021, 38, 301-317.	3.5	3

#	Article	IF	CITATIONS
19	Docosahexaenoic acid nanoencapsulated with anti-PECAM-1 as co-therapy for atherosclerosis regression. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 159, 99-107.	4.3	8
20	Dermatopharmacokinetic and pharmacodynamic evaluation of a novel nanostructured formulation containing capsaicinoids for treating neuropathic pain. International Journal of Pharmaceutics, 2021, 596, 120294.	5.2	6
21	scFv-Anti-LDL(-)-Metal-Complex Multi-Wall Functionalized-Nanocapsules as a Promising Tool for the Prevention of Atherosclerosis Progression. Frontiers in Medicine, 2021, 8, 652137.	2.6	2
22	Resveratrol-Loaded Lipid-Core Nanocapsules Modulate Acute Lung Inflammation and Oxidative Imbalance Induced by LPS in Mice. Pharmaceutics, 2021, 13, 683.	4.5	7
23	Antibacterial activity against Gram-positive bacteria using fusidic acid-loaded lipid-core nanocapsules. Reactive and Functional Polymers, 2021, 162, 104876.	4.1	14
24	Nanoformulation Shows Cytotoxicity against Glioblastoma Cell Lines and Antiangiogenic Activity in Chicken Chorioallantoic Membrane. Pharmaceutics, 2021, 13, 862.	4.5	2
25	Polymeric nanocapsules as a binder system for fluidized bed granules: Influence on particle growth behavior, flow, compaction properties, and drug release. Powder Technology, 2021, 385, 327-335.	4.2	3
26	A set of synthetic data, antibacterial evaluation and bacterial interaction with lipid-core nanocapsules containing fusidic acid. Data in Brief, 2021, 36, 107089.	1.0	1
27	Organic Nanocarriers for Bevacizumab Delivery: An Overview of Development, Characterization and Applications. Molecules, 2021, 26, 4127.	3.8	7
28	New nanotechnological formulation based on amiodarone-loaded lipid core nanocapsules displays anticryptococcal effect. European Journal of Pharmaceutical Sciences, 2021, 162, 105816.	4.0	5
29	EGFRvIII peptideÂnanocapsules and bevacizumabÂnanocapsules: a nose-to-brain multitarget approach against glioblastoma. Nanomedicine, 2021, 16, 1775-1790.	3.3	4
30	Folic acid-doxorubicin polymeric nanocapsules: A promising formulation for the treatment of triple-negative breast cancer. European Journal of Pharmaceutical Sciences, 2021, 165, 105943.	4.0	7
31	Development of bozepinib-loaded nanocapsules for nose-to-brain delivery: preclinical evaluation in glioblastoma. Nanomedicine, 2021, 16, 2095-2115.	3.3	1
32	Oral delivery of ambrisentan-loaded lipid-core nanocapsules as a novel approach for the treatment of pulmonary arterial hypertension. International Journal of Pharmaceutics, 2021, 610, 121181.	5.2	4
33	Polycaprolactone And Polycaprolactone Triol Blends To Obtain A Stable Liquid Nanotechnological Formulation: Synthesis, Characterization And In Vitro - In Vivo Taste Masking Evaluation. Drug Development and Industrial Pharmacy, 2021, , 1-18.	2.0	0
34	Evaluation instruments for physical therapy using virtual reality in stroke patients: a systematic review. Physiotherapy, 2020, 106, 194-210.	0.4	16
35	Encapsulation in lipid-core nanocapsules improves topical treatment with the potent antileishmanial compound CH8. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102121.	3.3	6
36	Anti-HPV Nanoemulsified-Imiquimod: A New and Potent Formulation to Treat Cervical Cancer. AAPS PharmSciTech, 2020, 21, 54.	3.3	12

#	Article	IF	CITATIONS
37	Chitosan as a coating material for nanoparticles intended for biomedical applications. Reactive and Functional Polymers, 2020, 147, 104459.	4.1	130
38	Dermatological applications of the flavonoid phloretin. European Journal of Pharmacology, 2020, 889, 173593.	3.5	26
39	Gelatin-based membrane containing usnic acid-loaded liposomes: A new treatment strategy for corneal healing. Biomedicine and Pharmacotherapy, 2020, 130, 110391.	5.6	16
40	Pequi (Caryocar brasiliense Cambess)-Loaded Nanoemulsion, Orally Delivered, Modulates Inflammation in LPS-Induced Acute Lung Injury in Mice. Pharmaceutics, 2020, 12, 1075.	4.5	12
41	Taste-masked nanoparticles containing Saquinavir for pediatric oral administration. Materials Science and Engineering C, 2020, 117, 111315.	7.3	17
42	Erlotinib-Loaded Poly(ε-Caprolactone) Nanocapsules Improve In Vitro Cytotoxicity and Anticlonogenic Effects on Human A549 Lung Cancer Cells. AAPS PharmSciTech, 2020, 21, 229.	3.3	16
43	Intranasal administration of budesonide-loaded nanocapsule microagglomerates as an innovative strategy for asthma treatment. Drug Delivery and Translational Research, 2020, 10, 1700-1715.	5.8	7
44	Chitosan-Coated Lipid-Core Nanocapsules Functionalized with Gold-III and Bevacizumab Induced In Vitro Cytotoxicity against C6 Cell Line and In Vivo Potent Antiangiogenic Activity. Pharmaceutical Research, 2020, 37, 91.	3.5	12
45	Healing of dermal wounds property of Caryocar brasiliense oil loaded polymeric lipid-core nanocapsules: formulation and in vivo evaluation. European Journal of Pharmaceutical Sciences, 2020, 150, 105356.	4.0	12
46	Characterization of β-cyclodextrin/myrtenol complex and its protective effect against nociceptive behavior and cognitive impairment in a chronic musculoskeletal pain model. Carbohydrate Polymers, 2020, 244, 116448.	10.2	13
47	Spray-dried raloxifene submicron particles for pulmonary delivery: Development and in vivo pharmacokinetic evaluation in rats. International Journal of Pharmaceutics, 2020, 585, 119429.	5.2	9
48	New pectin-based hydrogel containing imiquimod-loaded polymeric nanocapsules for melanoma treatment. Drug Delivery and Translational Research, 2020, 10, 1829-1840.	5.8	20
49	Sublingual tablets containing spray-dried carvedilol-loaded nanocapsules: development of an innovative nanomedicine. Pharmaceutical Development and Technology, 2020, 25, 1053-1062.	2.4	5
50	Phenytoin-loaded lipid-core nanocapsules improve the technological properties and in vivo performance of fluidised bed granules. Materials Science and Engineering C, 2020, 111, 110753.	7.3	6
51	(â~')-linalool-Loaded Polymeric Nanocapsules Are a Potential Candidate to Fibromyalgia Treatment. AAPS PharmSciTech, 2020, 21, 184.	3.3	6
52	<i>Galleria mellonella</i> Larvae as an <i>In Vivo</i> Model to Evaluate the Toxicity of Polymeric Nanocapsules. Journal of Nanoscience and Nanotechnology, 2020, 20, 1486-1494.	0.9	12
53	Chitosan-coated nanocapsules ameliorates the effect of olanzapine in prepulse inhibition of startle response (PPI) in rats following oral administration. Reactive and Functional Polymers, 2020, 148, 104493.	4.1	13
54	Oral Treatment of Spontaneously Hypertensive Rats with Captopril-Surface Functionalized Furosemide-Loaded Multi-Wall Lipid-Core Nanocapsules. Pharmaceutics, 2020, 12, 80.	4.5	11

#	Article	IF	CITATIONS
55	Simultaneous nanoencapsulation of lipoic acid and resveratrol with improved antioxidant properties for the skin. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111023.	5.0	12
56	Characterization and antiproliferative activity of glioma-derived extracellular vesicles. Nanomedicine, 2020, 15, 1001-1018.	3.3	19
57	<p>Orally delivered resveratrol-loaded lipid-core nanocapsules ameliorate LPS-induced acute lung injury via the ERK and PI3K/Akt pathways</p> . International Journal of Nanomedicine, 2019, Volume 14, 5215-5228.	6.7	59
58	Spray-dried carvedilol-loaded nanocapsules for sublingual administration: Mucoadhesive properties and drug permeability. Powder Technology, 2019, 354, 348-357.	4.2	11
59	Imiquimod-loaded nanocapsules improve cytotoxicity in cervical cancer cell line. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 9-17.	4.3	29
60	Redispersible Spray-Dried Powder Containing Nanoencapsulated Curcumin: the Drying Process Does Not Affect Neuroprotection In vitro. AAPS PharmSciTech, 2019, 20, 283.	3.3	8
61	Polymeric Nanoparticles. , 2019, , 73-94.		0
62	Direct effects of poly(ε-caprolactone) lipid-core nanocapsules on human immune cells. Nanomedicine, 2019, 14, 1429-1442.	3.3	12
63	Rapid and sensitive LC-MS/MS method for simultaneous quantification of capsaicin and dihydrocapsaicin in microdialysis samples following dermal application. Journal of Pharmaceutical and Biomedical Analysis, 2019, 173, 126-133.	2.8	8
64	Lapatinib-Loaded Nanocapsules Enhances Antitumoral Effect in Human Bladder Cancer Cell. Frontiers in Oncology, 2019, 9, 203.	2.8	11
65	Chitosan-Coated Nanoparticles: Effect of Chitosan Molecular Weight on Nasal Transmucosal Delivery. Pharmaceutics, 2019, 11, 86.	4.5	79
66	Nasal Drug Delivery of Anticancer Drugs for the Treatment of Glioblastoma: Preclinical and Clinical Trials. Molecules, 2019, 24, 4312.	3.8	77
67	Melatonin-loaded lipid-core nanocapsules protect against lipid peroxidation caused by paraquat through increased SOD expression in Caenorhabditis elegans. BMC Pharmacology & Toxicology, 2019, 20, 80.	2.4	14
68	SCC4 cell monolayers as an alternative sublingual barrier model: influence of nanoencapsulation on carvedilol transport. Drug Development and Industrial Pharmacy, 2019, 45, 63-66.	2.0	2
69	Lipid core nanoparticles as a broad strategy to reverse fluconazole resistance in multiple Candida species. Colloids and Surfaces B: Biointerfaces, 2019, 175, 523-529.	5.0	36
70	Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: Skin permeation/penetration and efficacy in wound healing. Materials Science and Engineering C, 2019, 96, 205-217.	7.3	58
71	Mucoadhesive Properties of Eudragit®RS100, Eudragit®S100, and Poly(ε-caprolactone) Nanocapsules: Influence of the Vehicle and the Mucosal Surface. AAPS PharmSciTech, 2018, 19, 1637-1646.	3.3	40
72	Evaluation of muscle strength, balance and functionality of individuals with type 2 Charcot-Marie-Tooth Disease. Gait and Posture, 2018, 62, 463-467.	1.4	4

#	Article	IF	CITATIONS
73	Fluid bed granulation as an innovative process to produce dry redispersible nanocapsules: Influence of cationic coating of particles. Powder Technology, 2018, 326, 25-31.	4.2	5
74	Redispersible spray-dried lipid-core nanocapsules intended for oral delivery: the influence of the particle number on redispersibility. Pharmaceutical Development and Technology, 2018, 23, 414-425.	2.4	6
75	Redispersible spray-dried nanocapsules for the development of skin delivery systems: proposing a novel blend of drying adjuvants. Soft Materials, 2018, 16, 20-30.	1.7	3
76	Chemical stability, mass loss and hydrolysis mechanism of sterile and non-sterile lipid-core nanocapsules: The influence of the molar mass of the polymer wall. Reactive and Functional Polymers, 2018, 133, 161-172.	4.1	9
77	Data of characterization and related assays of lipid-core nanocapsule formulations and their hydrolysis mechanism. Data in Brief, 2018, 21, 918-933.	1.0	2
78	Reconstituted spray-dried phenytoin-loaded nanocapsules improve the in vivo phenytoin anticonvulsant effect and the survival time in mice. International Journal of Pharmaceutics, 2018, 551, 121-132.	5.2	15
79	Effect on adhesion of a nanocapsules-loaded adhesive system. Brazilian Oral Research, 2018, 32, e008.	1.4	10
80	New therapeutic patents used for the treatment of leprosy: a review. Epidemiology and Infection, 2018, 146, 1746-1749.	2.1	4
81	An Inhalable Powder Formulation Based on Micro- and Nanoparticles Containing 5-Fluorouracil for the Treatment of Metastatic Melanoma. Nanomaterials, 2018, 8, 75.	4.1	19
82	Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting. Pharmaceutics, 2018, 10, 34.	4.5	206
83	Enhanced and Selective Antiproliferative Activity of Methotrexate-Functionalized-Nanocapsules to Human Breast Cancer Cells (MCF-7). Nanomaterials, 2018, 8, 24.	4.1	23
84	Arginylglycylaspartic Acid-Surface-Functionalized Doxorubicin-Loaded Lipid-Core Nanocapsules as a Strategy to Target Alpha(V) Beta(3) Integrin Expressed on Tumor Cells. Nanomaterials, 2018, 8, 2.	4.1	28
85	Mechanisms of the effectiveness of poly(ε-caprolactone) lipid-core nanocapsules loaded with methotrexate on glioblastoma multiforme treatment. International Journal of Nanomedicine, 2018, Volume 13, 4563-4573.	6.7	19
86	Production of Isotonic, Sterile, and Kinetically Stable Lipid-Core Nanocapsules for Injectable Administration. AAPS PharmSciTech, 2017, 18, 212-223.	3.3	11
87	Effect of indomethacin-loaded nanocapsules incorporation in a dentin adhesive resin. Clinical Oral Investigations, 2017, 21, 437-446.	3.0	13
88	Effects of chitosan-coated lipid-core nanocapsules on bovine sperm cells. Toxicology in Vitro, 2017, 40, 214-222.	2.4	19
89	Stability of doripenem in reconstituted solution – thermal and oxidative decomposition kinetics and degradation products by LC–MS. Biomedical Chromatography, 2017, 31, e3940.	1.7	4
90	Carvedilol-loaded nanocapsules: Mucoadhesive properties and permeability across the sublingual mucosa. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 88-95.	4.3	61

#	Article	IF	CITATIONS
91	Physico-chemical characterization and antibacterial activity of inclusion complexes of Hyptis martiusii Benth essential oil in β-cyclodextrin. Biomedicine and Pharmacotherapy, 2017, 89, 201-207.	5.6	52
92	The use of chitosan as cationic coating or gel vehicle for polymeric nanocapsules: Increasing penetration and adhesion of imiquimod in vaginal tissue. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 202-212.	4.3	74
93	Ciprofloxacin-loaded lipid-core nanocapsules as mucus penetrating drug delivery system intended for the treatment of bacterial infections in cystic fibrosis. International Journal of Pharmaceutics, 2017, 527, 92-102.	5.2	58
94	Antimicrobial effect and physicochemical properties of an adhesive system containing nanocapsules. Dental Materials, 2017, 33, 735-742.	3.5	25
95	Evaluation of the antibacterial and modulatory potential of α-bisabolol, β-cyclodextrin and α-bisabolol/β-cyclodextrin complex. Biomedicine and Pharmacotherapy, 2017, 92, 1111-1118.	5.6	46
96	Nanoencapsulation of a glucocorticoid improves barrier function and anti-inflammatory effect on monolayers of pulmonary epithelial cell lines. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 1-10.	4.3	7
97	Drug-loaded nanoemulsion as positive control is an alternative to DMSO solutions for in vitro evaluation of curcumin delivery to MCF-7 cells. Pharmacological Reports, 2017, 69, 1408-1412.	3.3	7
98	Assessing the performance of copaiba oil and allantoin nanoparticles on multidrug-resistant Candida parapsilosis. Journal of Drug Delivery Science and Technology, 2017, 40, 59-65.	3.0	9
99	Natural and synthetic products used for the treatment of smoke inhalation: a patent review. Expert Opinion on Therapeutic Patents, 2017, 27, 877-886.	5.0	5
100	Lutein-loaded lipid-core nanocapsules: Physicochemical characterization and stability evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 477-484.	4.7	35
101	Liquid formulation containing doxorubicin-loaded lipid-core nanocapsules: Cytotoxicity in human breast cancer cell line and in vitro uptake mechanism. Materials Science and Engineering C, 2017, 76, 374-382.	7.3	24
102	Bromelain-Functionalized Multiple-Wall Lipid-Core Nanocapsules: Formulation, Chemical Structure and Antiproliferative Effect Against Human Breast Cancer Cells (MCF-7). Pharmaceutical Research, 2017, 34, 438-452.	3.5	33
103	High doses of lipid-core nanocapsules do not affect bovine embryonic development in vitro. Toxicology in Vitro, 2017, 45, 194-201.	2.4	7
104	Anti-inflammatory effect of an adhesive resin containing indomethacin-loaded nanocapsules. Archives of Oral Biology, 2017, 84, 106-111.	1.8	8
105	Data of PCL-b-P(MMA-DMAEMA) 2 characterization and related assays. Data in Brief, 2017, 15, 111-126.	1.0	1
106	Tretinoin-loaded lipid-core nanocapsules overcome the triple-negative breast cancer cell resistance to tretinoin and show synergistic effect on cytotoxicity induced by doxorubicin and 5-fluororacil. Biomedicine and Pharmacotherapy, 2017, 96, 404-409.	5.6	15
107	PCL- b -P(MMA- co -DMAEMA) 2 new triblock copolymer for novel pH-sensitive nanocapsules intended for drug delivery to tumors. Reactive and Functional Polymers, 2017, 119, 116-124.	4.1	7
108	Drug delivery to the brain: how can nanoencapsulated statins be used in the clinic?. Therapeutic Delivery, 2017, 8, 625-631.	2.2	13

#	Article	IF	CITATIONS
109	Doxazosin nanoencapsulation improves its in vitro antiproliferative and anticlonogenic effects on breast cancer cells. Biomedicine and Pharmacotherapy, 2017, 94, 10-20.	5.6	9
110	PET-CT imaging of atherosclerosis in Ldlr-/- mice treated with an anti-LDL(-) nanoformulation. Atherosclerosis, 2017, 263, e17.	0.8	1
111	Lipid-core nanocapsules increase the oral efficacy of quercetin in cutaneous leishmaniasis. Parasitology, 2017, 144, 1769-1774.	1.5	30
112	Thermal and ultraviolet–visible light stability kinetics of co-nanoencapsulated carotenoids. Food and Bioproducts Processing, 2017, 105, 86-94.	3.6	24
113	Lipid Nanoparticles Obtained with Innovative Natural Materials for Topical Delivery of Tioconazole: Mangospheres. Journal of Nanoscience and Nanotechnology, 2017, 17, 1762-1770.	0.9	6
114	Loading A Drug on Contact Lenses Using Polymeric Nanocapsules: Effects on Drug Release, Transparency, and Ion Permeability. Journal of Nanoscience and Nanotechnology, 2017, 17, 9286-9294.	0.9	6
115	Triclosan resistance reversion by encapsulation in chitosan-coated-nanocapsule containing α-bisabolol as core: development of wound dressing. International Journal of Nanomedicine, 2017, Volume 12, 7855-7868.	6.7	19
116	Role of poly(ε-caprolactone) lipid-core nanocapsules on melanoma–neutrophil crosstalk. International Journal of Nanomedicine, 2017, Volume 12, 7153-7163.	6.7	11
117	Hesperetin-loaded lipid-core nanocapsules in polyamide: a new textile formulation for topical drug delivery. International Journal of Nanomedicine, 2017, Volume 12, 2069-2079.	6.7	41
118	α-bisabolol-loaded lipid-core nanocapsules reduce lipopolysaccharide-induced pulmonary inflammation in mice. International Journal of Nanomedicine, 2017, Volume 12, 4479-4491.	6.7	35
119	Nano-BCG: A Promising Delivery System for Treatment of Human Bladder Cancer. Frontiers in Pharmacology, 2017, 8, 977.	3.5	13
120	The Potential of Nanotechnology in Medically Assisted Reproduction. Frontiers in Pharmacology, 2017, 8, 994.	3.5	21
121	Alpha-bisabolol Promotes Glioma Cell Death by Modulating the Adenosinergic System. Anticancer Research, 2017, 37, 1819-1823.	1.1	9
122	Effects of Two Types of Melatonin-Loaded Nanocapsules with Distinct Supramolecular Structures: Polymeric (NC) and Lipid-Core Nanocapsules (LNC) on Bovine Embryo Culture Model. PLoS ONE, 2016, 11, e0157561.	2.5	24
123	Novel therapeutic mechanisms determine the effectiveness of lipid-core nanocapsules on melanoma models. International Journal of Nanomedicine, 2016, 11, 1261.	6.7	13
124	A nanoformulation containing a scFv reactive to electronegative LDL inhibits atherosclerosis in LDL receptor knockout mice. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 107, 120-129.	4.3	12
125	Melatonin delivery by nanocapsules during in vitro bovine oocyte maturation decreased the reactive oxygen species of oocytes and embryos. Reproductive Toxicology, 2016, 63, 70-81.	2.9	45
126	Skin penetration and dermal tolerability of acrylic nanocapsules: Influence of the surface charge and a chitosan gel used as vehicle. International Journal of Pharmaceutics, 2016, 507, 12-20.	5.2	60

#	Article	IF	CITATIONS
127	Stability study of lycopene-loaded lipid-core nanocapsules under temperature and photosensitization. LWT - Food Science and Technology, 2016, 71, 190-195.	5.2	15
128	InÂvivo prophylactic gastroprotection using α-bisabolol encapsulated in lipid-core nanocapsules and in cocoa-theospheres. Journal of Drug Delivery Science and Technology, 2016, 36, 99-109.	3.0	4
129	Chitosan-coated dapsone-loaded lipid-core nanocapsules: Growth inhibition of clinical isolates, multidrug-resistant Staphylococcus aureus and Aspergillus ssp Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 153-161.	4.7	40
130	Coated minispheres of salmon calcitonin target rat intestinal regions to achieve systemic bioavailability: Comparison between intestinal instillation and oral gavage. Journal of Controlled Release, 2016, 238, 242-252.	9.9	17
131	Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine model. International Journal of Pharmaceutics, 2016, 513, 473-482.	5.2	61
132	Lipid-Core Nanocapsules Act as a Drug Shuttle Through the Blood Brain Barrier and Reduce Glioblastoma After Intravenous or Oral Administration. Journal of Biomedical Nanotechnology, 2016, 12, 986-1000.	1.1	50
133	Vegetable Oil-Loaded Nanocapsules: Innovative Alternative for Incorporating Drugs for Parenteral Administration. Journal of Nanoscience and Nanotechnology, 2016, 16, 1310-1320.	0.9	14
134	Polymeric Nanocapsules for Topical Delivery. , 2016, , 201-221.		3
135	A Special Section on Pharmaceutical Nanotechnology: Development of Soft Nanoparticles and Their Biological Evaluations. Journal of Nanoscience and Nanotechnology, 2016, 16, 1235-1237.	0.9	Ο
136	Development of an Insect Repellent Spray for Textile Based on Permethrin-Loaded Lipid-Core Nanocapsules. Journal of Nanoscience and Nanotechnology, 2016, 16, 1301-1309.	0.9	10
137	Methotrexate up-regulates ecto-5′-nucleotidase/CD73 and reduces the frequency of T lymphocytes in the glioblastoma microenvironment. Purinergic Signalling, 2016, 12, 303-312.	2.2	33
138	The Production, Characterization, and the Stability of Carotenoids Loaded in Lipid-Core Nanocapsules. Food and Bioprocess Technology, 2016, 9, 1148-1158.	4.7	24
139	Cationic Polymeric Nanocapsules as a Strategy to Target Dexamethasone to Viable Epidermis: Skin Penetration and Permeation Studies. Journal of Nanoscience and Nanotechnology, 2016, 16, 1331-1338.	0.9	31
140	Lipid-Core Nanocapsules Improved Antiedematogenic Activity of Tacrolimus in Adjuvant-Induced Arthritis Model. Journal of Nanoscience and Nanotechnology, 2016, 16, 1265-1274.	0.9	16
141	Nanocarriers for optimizing the balance between interfollicular permeation and follicular uptake of topically applied clobetasol to minimize adverse effects. Journal of Controlled Release, 2016, 223, 207-214.	9.9	58
142	Nanoencapsulation of Rose-Hip Oil Prevents Oil Oxidation and Allows Obtainment of Gel and Film Topical Formulations. AAPS PharmSciTech, 2016, 17, 863-871.	3.3	23
143	Evaluation of potential acute cardiotoxicity of biodegradable nanocapsules in rats by intravenous administration. Toxicology Research, 2016, 5, 168-179.	2.1	9
144	Products with Natural Components to Heal Dermal Burns: A Patent Review. Recent Patents on Biotechnology, 2016, 9, 168-175.	0.8	0

#	Article	IF	CITATIONS
145	Mucoadhesive Amphiphilic Methacrylic Copolymer-Functionalized Poly(<i>ε</i> -caprolactone) Nanocapsules for Nose-to-Brain Delivery of Olanzapine. Journal of Biomedical Nanotechnology, 2015, 11, 1472-1481.	1.1	46
146	Methotrexate-loaded lipid-core nanocapsules are highly effective in the control of inflammation in synovial cells and a chronic arthritis model. International Journal of Nanomedicine, 2015, 10, 6603.	6.7	25
147	Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage. International Journal of Nanomedicine, 2015, 10, 5093.	6.7	56
148	<i>A Special Section on</i> Pharmaceutical Nanotechnology: Development of Innovative Formulations and Their Biological Evaluation. Journal of Nanoscience and Nanotechnology, 2015, 15, 759-760.	0.9	0
149	Assessing the In Vitro Drug Release from Lipid-Core Nanocapsules: a New Strategy Combining Dialysis Sac and a Continuous-Flow System. AAPS PharmSciTech, 2015, 16, 1409-1417.	3.3	29
150	Radar charts based on particle sizing as an approach to establish the fingerprints of polymeric nanoparticles in aqueous formulations. Journal of Drug Delivery Science and Technology, 2015, 30, 180-189.	3.0	26
151	α-Tocopherol acetate-loaded chitosan microparticles: Stability during spray drying process, photostability and swelling evaluation. Journal of Drug Delivery Science and Technology, 2015, 30, 220-224.	3.0	17
152	How Sorbitan Monostearate Can Increase Drug-Loading Capacity of Lipid-Core Polymeric Nanocapsules. Journal of Nanoscience and Nanotechnology, 2015, 15, 827-837.	0.9	23
153	Improving drug biological effects by encapsulation into polymeric nanocapsules. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 623-639.	6.1	120
154	Development of Novel Chitosan Microcapsules for Pulmonary Delivery of Dapsone: Characterization, Aerosol Performance, and In Vivo Toxicity Evaluation. AAPS PharmSciTech, 2015, 16, 1033-1040.	3.3	29
155	Development of lycopene-loaded lipid-core nanocapsules: physicochemical characterization and stability study. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	47
156	Inhalable resveratrol microparticles produced by vibrational atomization spray drying for treating pulmonary arterial hypertension. Journal of Drug Delivery Science and Technology, 2015, 29, 152-158.	3.0	39
157	Pectin beads loaded with chitosan–iron microspheres for specific colonic adsorption of ciprofloxacin. Journal of Drug Delivery Science and Technology, 2015, 30, 494-500.	3.0	14
158	A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: In vivo studies. European Journal of Pharmaceutical Sciences, 2015, 78, 163-170.	4.0	68
159	Protective effects of melatonin-loaded lipid-core nanocapsules on paraquat-induced cytotoxicity and genotoxicity in a pulmonary cell line. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 784-785, 1-9.	1.7	27
160	Do poly(epsilon-caprolactone) lipid-core nanocapsules induce oxidative or inflammatory damage after in vivo subchronic treatment?. Toxicology Research, 2015, 4, 994-1005.	2.1	10
161	Nanoencapsulation of Clobetasol Propionate Decreases Its Penetration to Skin Layers Without Changing Its Relative Skin Distribution. Journal of Nanoscience and Nanotechnology, 2015, 15, 875-879.	0.9	14
162	Tretinoin-loaded lipid-core nanocapsules decrease reactive oxygen species levels and improve bovine embryonic development during in vitro oocyte maturation. Reproductive Toxicology, 2015, 58, 131-139.	2.9	16

#	Article	IF	CITATIONS
163	Polymeric Nanocapsules and Lipid-Core Nanocapsules Have Diverse Skin Penetration. Journal of Nanoscience and Nanotechnology, 2015, 15, 773-780.	0.9	28
164	Pharmacological Improvement and Preclinical Evaluation of Methotrexate-Loaded Lipid-Core Nanocapsules in a Glioblastoma Model. Journal of Biomedical Nanotechnology, 2015, 11, 1808-1818.	1.1	29
165	Nanoencapsulation Improves Relative Bioavailability and Antipsychotic Effect of Olanzapine in Rats. Journal of Biomedical Nanotechnology, 2015, 11, 1482-1493.	1.1	19
166	Co-encapsulation of imiquimod and copaiba oil in novel nanostructured systems: promising formulations against skin carcinoma. European Journal of Pharmaceutical Sciences, 2015, 79, 36-43.	4.0	53
167	Laronidase-Functionalized Multiple-Wall Lipid-Core Nanocapsules: Promising Formulation for a More Effective Treatment of Mucopolysaccharidosis Type I. Pharmaceutical Research, 2015, 32, 941-954.	3.5	31
168	Ultraviolet A Irradiation Increases the Permeation of Fullerenes into Human and Porcine Skin from C ₆₀ -Poly(vinylpyrrolidone) Aggregate Dispersions. Skin Pharmacology and Physiology, 2015, 28, 22-30.	2.5	7
169	Lipid-Core Nanocapsules: Reducing the Aqueous Phase Volume to Increase Encapsulation Efficiency and to Reduce the Energy and Time Consuming of the Production Process. Journal of Colloid Science and Biotechnology, 2015, 4, 79-85.	0.2	1
170	Solid lipid nanoparticles containing copaiba oil and allantoin: development and role of nanoencapsulation on the antifungal activity. Die Pharmazie, 2015, 70, 155-64.	0.5	18
171	Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line. International Journal of Nanomedicine, 2014, 9, 1583.	6.7	16
172	Colloidal Dispersion Stability: Kinetic Modeling of Agglomeration and Aggregation. Journal of the Brazilian Chemical Society, 2014, , .	0.6	3
173	Nanoencapsulation in Lipid-Core Nanocapsules Controls Mometasone Furoate Skin Permeability Rate and Its Penetration to the Deeper Skin Layers. Skin Pharmacology and Physiology, 2014, 27, 217-217.	2.5	31
174	Combined Effect of Polymeric Nanocapsules and Chitosan Hydrogel on the Increase of Capsaicinoids Adhesion to the Skin Surface. Journal of Biomedical Nanotechnology, 2014, 10, 820-830.	1.1	48
175	Nanoencapsulation of Olanzapine Increases Its Efficacy in Antipsychotic Treatment and Reduces Adverse Effects. Journal of Biomedical Nanotechnology, 2014, 10, 1137-1145.	1.1	24
176	Investigation of coco-glucoside as a novel intestinal permeation enhancer in rat models. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 856-865.	4.3	26
177	The use of nanoencapsulation to decrease human skin irritation caused by capsaicinoids. International Journal of Nanomedicine, 2014, 9, 951.	6.7	28
178	Chitosan gel containing polymeric nanocapsules: a new formulation for vaginal drug delivery. International Journal of Nanomedicine, 2014, 9, 3151.	6.7	52
179	Rice Bran Oil. , 2014, , 311-322.		1
180	Influence of the type of vegetable oil on the drug release profile from lipid-core nanocapsules and <i>in vivo</i> genotoxicity study. Pharmaceutical Development and Technology, 2014, 19, 789-798.	2.4	22

#	Article	IF	CITATIONS
181	In vivo toxicological evaluation of polymeric nanocapsules after intradermal administration. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 167-177.	4.3	35
182	Innovative approach to produce submicron drug particles by vibrational atomization spray drying: influence of the type of solvent and surfactant. Drug Development and Industrial Pharmacy, 2014, 40, 1011-1020.	2.0	13
183	Pyrimethamine-loaded lipid-core nanocapsules to improve drug efficacy for the treatment of toxoplasmosis. Parasitology Research, 2014, 113, 555-564.	1.6	16
184	Encapsulation in lipid-core nanocapsules overcomes lung cancer cell resistance to tretinoin. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 55-63.	4.3	28
185	Microparticles of Aloe vera/vitamin E/chitosan: Microscopic, a nuclear imaging and an in vivo test analysis for burn treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 292-300.	4.3	48
186	Redispersible liposomal-N-acetylcysteine powder for pulmonary administration: Development, in vitro characterization and antioxidant activity. European Journal of Pharmaceutical Sciences, 2014, 65, 174-182.	4.0	38
187	Nanoencapsulation of Tacrolimus in Lipid-Core Nanocapsules Showed Similar Immunosuppressive Activity After Oral and Intraperitoneal Administrations. Journal of Biomedical Nanotechnology, 2014, 10, 1599-1609.	1.1	17
188	Penetration, photo-reactivity and photoprotective properties of nanosized ZnO. Photochemical and Photobiological Sciences, 2014, 13, 1253-1260.	2.9	10
189	Prednisolone-loaded nanocapsules as ocular drug delivery system: development, <i>in vitro</i> drug release and eye toxicity. Journal of Microencapsulation, 2014, 31, 519-528.	2.8	49
190	Polymeric controlled release inhalable powder produced by vibrational spray-drying: One-step preparation and in vitro lung deposition. Powder Technology, 2014, 258, 49-59.	4.2	32
191	Labeling the oily core of nanocapsules and lipid-core nanocapsules with a triglyceride conjugated to a fluorescent dye as a strategy to particle tracking in biological studies. Nanoscale Research Letters, 2014, 9, 233.	5.7	20
192	New strategy to surface functionalization of polymeric nanoparticles: one-pot synthesis of scFv anti-LDL(â^)-functionalized nanocapsules. Pharmaceutical Research, 2014, 31, 2975-2987.	3.5	25
193	A strategy to estimate the intrinsic flux of a poorly water soluble substance for comparison with its release from lipid-core nanocapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 716-724.	4.7	5
194	Structural analysis of chitosan hydrogels containing polymeric nanocapsules. Materials Science and Engineering C, 2014, 42, 234-242.	7.3	29
195	Castor oil and mineral oil nanoemulsion: development and compatibility with a soft contact lens. Pharmaceutical Development and Technology, 2014, 19, 232-237.	2.4	22
196	Polymeric Nanoparticles: In Vivo Toxicological Evaluation, Cardiotoxicity, and Hepatotoxicity. Nanomedicine and Nanotoxicology, 2014, , 299-324.	0.2	9
197	LC-MS/MS METHOD APPLIED TO PRECLINICAL PHARMACOKINETIC INVESTIGATION OF OLANZAPINE-LOADED LIPID-CORE NANOCAPSULES. Quimica Nova, 2014, , .	0.3	0
198	Applying the sensory analysis in the development of chitosan hydrogel containing polymeric nanocapsules for cutaneous use. Journal of Cosmetic Science, 2014, 65, 299-314.	0.1	0

#	Article	IF	CITATIONS
199	Vegetable oils as core of cationic polymeric nanocapsules: influence on the physicochemical properties. Journal of Experimental Nanoscience, 2013, 8, 913-924.	2.4	28
200	Vitamin K1–loaded lipid ore nanocapsules: physicochemical characterization and <i>in vitro</i> skin permeation. Skin Research and Technology, 2013, 19, e223-30.	1.6	24
201	A LC-UV method to assay N-acetylcysteine without derivatization: analyses of pharmaceutical products. Analytical Methods, 2013, 5, 3321.	2.7	12
202	Isoniazid interaction with phosphatidylcholine-based membranes. Journal of Molecular Structure, 2013, 1051, 237-243.	3.6	6
203	Variable temperature multiple light scattering analysis to determine the enthalpic term of a reversible agglomeration in submicrometric colloidal formulations: A quick quantitative comparison of the relative physical stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 431, 93-104.	4.7	18
204	Poly(ϵ-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opinion on Drug Delivery, 2013, 10, 623-638.	5.0	186
205	Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 156-167.	4.3	136
206	An algorithm to determine the mechanism of drug distribution in lipid-core nanocapsule formulations. Soft Matter, 2013, 9, 1141-1150.	2.7	65
207	Neuroprotective Effects of Resveratrol Against Aβ Administration in Rats are Improved by Lipid-Core Nanocapsules. Molecular Neurobiology, 2013, 47, 1066-1080.	4.0	149
208	Lipid-Core Nanocapsules Improve the Effects of Resveratrol Against A <i>β</i> -Induced Neuroinflammation. Journal of Biomedical Nanotechnology, 2013, 9, 2086-2104.	1.1	58
209	Resveratrol-Loaded Lipid-Core Nanocapsules Treatment Reduces <i>In</i> <i>Vitro</i> and <i>In Vivo</i> Glioma Growth. Journal of Biomedical Nanotechnology, 2013, 9, 516-526.	1.1	85
210	Characterization of Rheology and Release Profiles of Olanzapine-Loaded Lipid-Core Nanocapsules in Thermosensitive Hydrogel. Journal of Nanoscience and Nanotechnology, 2013, 13, 8144-8153.	0.9	7
211	The antiproliferative effect of indomethacin-loaded lipid-core nanocapsules in glioma cells is mediated by cell cycle regulation, differentiation, and the inhibition of survival pathways. International Journal of Nanomedicine, 2013, 8, 711.	6.7	31
212	New Approach to Determine the Phase Transition Temperature, Cloud Point, of Thermoresponsive Polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 581-587.	2.2	3
213	Acute and Subchronic Toxicity Evaluation of Poly(É›-Caprolactone) Lipid-Core Nanocapsules in Rats. Toxicological Sciences, 2013, 132, 162-176.	3.1	53
214	Evaluation of lipoic acid topical application on rats skin wound healing. Acta Cirurgica Brasileira, 2013, 28, 708-715.	0.7	10
215	Impactos da nanotecnologia na saúde: produção de medicamentos. Quimica Nova, 2013, 36, 1520-1526.	0.3	26
216	In Vivo Gastroprotective Effect of Nanoparticles: Influence of Chemical Composition and Volume Fraction. Current Pharmaceutical Design, 2013, 19, 7294-7300.	1.9	7

#	Article	IF	CITATIONS
217	A nanotecnologia como estratégia para o desenvolvimento de cosméticos. Ciência E Cultura, 2013, 65, 28-31.	0.0	12
218	Polarimetry as an Analytical Method to Quantify Limonene-Loaded Nanoemulsions. Journal of Colloid Science and Biotechnology, 2013, 2, 334-341.	0.2	0
219	Chitosan Coated Liposomes as an Innovative Nanocarrier for Drugs. Journal of Biomedical Nanotechnology, 2012, 8, 240-250.	1.1	51
220	Development and Stability of Innovative Semisolid Formulations Containing Nanoencapsulated Lipoic Acid for Topical Use. Journal of Nanoscience and Nanotechnology, 2012, 12, 7723-7732.	0.9	15
221	Amphiphilic Diblock Copolymer and Polycaprolactone Blends to Produce New Vesicular Nanocarriers. Journal of Biomedical Nanotechnology, 2012, 8, 272-279.	1.1	7
222	Spray-Dried Powders Containing Tretinoin-Loaded Engineered Lipid-Core Nanocapsules: Development and Photostability Study. Journal of Nanoscience and Nanotechnology, 2012, 12, 2059-2067.	0.9	14
223	Isoflurane-Loaded Nanoemulsion Prepared by High-Pressure Homogenization: Investigation of Stability and Dose Reduction in General Anesthesia. Journal of Biomedical Nanotechnology, 2012, 8, 849-858.	1.1	14
224	Spray-Dried Polymeric Nanoparticles for Pharmaceutics: A Review of Patents. Recent Patents on Drug Delivery and Formulation, 2012, 6, 195-208.	2.1	19
225	<i>A Special Issue on</i> the Developments in Biomedical Nanotechnology in Latin America. Journal of Biomedical Nanotechnology, 2012, 8, 191-192.	1.1	3
226	Lipid-core nanocapsules: mechanism of self-assembly, control of size and loading capacity. Soft Matter, 2012, 8, 6646.	2.7	55
227	Sustained Antioxidant Activity of Quercetin-Loaded Lipid-Core Nanocapsules. Journal of Nanoscience and Nanotechnology, 2012, 12, 2874-2880.	0.9	17
228	Hydrogels containing redispersible spray-dried melatonin-loaded nanocapsules: a formulation for transdermal-controlled delivery. Nanoscale Research Letters, 2012, 7, 251.	5.7	38
229	Set-up of a method using LC-UV to assay mometasone furoate in pharmaceutical dosage forms. Quimica Nova, 2012, 35, 818-821.	0.3	13
230	Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Aβ1-42 in Alzheimer's disease models. International Journal of Nanomedicine, 2012, 7, 4927.	6.7	73
231	Semi-solid topical formulations containing nimesulide-loaded nanocapsules showed in-vivo anti-inflammatory activity in chronic arthritis and fibrovascular tissue models. Inflammation Research, 2012, 61, 305-310.	4.0	10
232	Hemocompatibility of poly(É›-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. International Journal of Pharmaceutics, 2012, 426, 271-279.	5.2	141
233	Photostability and Skin Penetration of Different <i>E</i> â€Resveratrolâ€Loaded Supramolecular Structures. Photochemistry and Photobiology, 2012, 88, 913-921.	2.5	75
234	Fluorescent-Labeled Poly(<i>ε</i> -caprolactone) Lipid-Core Nanocapsules: Synthesis, Physicochemical Properties and Macrophage Uptake. Journal of Colloid Science and Biotechnology, 2012, 1, 89-98.	0.2	36

#	Article	IF	CITATIONS
235	Spray-dried chitosan-metal microparticles for ciprofloxacin adsorption: Kinetic and equilibrium studies. Soft Matter, 2011, 7, 7304.	2.7	29
236	Diverse deformation properties of polymeric nanocapsules and lipid-core nanocapsules. Soft Matter, 2011, 7, 7240.	2.7	59
237	Sputtering onto Liquids: From Thin Films to Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 16362-16367.	3.1	67
238	Innovative Sunscreen Formulation Based on Benzophenone-3-Loaded Chitosan-Coated Polymeric Nanocapsules. Skin Pharmacology and Physiology, 2011, 24, 166-174.	2.5	49
239	Polymeric Nanocapsules: Concepts and Applications. , 2011, , 49-68.		25
240	Improved photostability and reduced skin permeation of tretinoin: Development of a semisolid nanomedicine. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 95-101.	4.3	109
241	Simultaneous Control of Capsaicinoids Release from Polymeric Nanocapsules. Journal of Nanoscience and Nanotechnology, 2011, 11, 2398-2406.	0.9	37
242	Acute toxicological evaluation of lipid-core nanocapsules. Toxicology Letters, 2011, 205, S287.	0.8	0
243	Nanostructured systems containing an essential oil: protection against volatilization. Quimica Nova, 2011, 34, 968-972.	0.3	74
244	Formulation and in vivo evaluation of sodium alendronate spray-dried microparticles intended for lung delivery. Journal of Controlled Release, 2011, 152, 370-375.	9.9	44
245	Formulation of lipid core nanocapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 200-208.	4.7	137
246	Polymeric nanocapsules ultra stable in complex biological media. Colloids and Surfaces B: Biointerfaces, 2011, 83, 376-381.	5.0	39
247	Transport of Substances and Nanoparticles across the Skin and in Vitro Models to Evaluate Skin Permeation and/or Penetration. , 2011, , 3-35.		13
248	Chitosan as Stabilizer and Carrier of Natural Based Nanostructures. , 2011, , 163-177.		1
249	Nanosized and Nanoencapsulated Sunscreens. , 2011, , 333-362.		5
250	Nanoencapsulation Improves the <i>In Vitro</i> Antioxidant Activity of Lipoic Acid. Journal of Biomedical Nanotechnology, 2011, 7, 598-607.	1.1	40
251	Drying Polymeric Drug-Loaded Nanocapsules: The Wet Granulation Process as a Promising Approach. Journal of Nanoscience and Nanotechnology, 2010, 10, 616-621.	0.9	17
252	Nanocapsules Prepared from Amorphous Polyesters: Effect on the Physicochemical Characteristics, Drug Release, and Photostability. Journal of Nanoscience and Nanotechnology, 2010, 10, 3091-3099.	0.9	38

#	Article	IF	CITATIONS
253	Thermal characterization of usnic acid/collagen-based films. Journal of Thermal Analysis and Calorimetry, 2010, 99, 1011-1014.	3.6	21
254	Lipid-core nanocapsules restrained the indomethacin ethyl ester hydrolysis in the gastrointestinal lumen and wall acting as mucoadhesive reservoirs. European Journal of Pharmaceutical Sciences, 2010, 39, 116-124.	4.0	48
255	Gastroresistant microparticles containing sodium alendronate prevent the bone loss in ovariectomized rats. European Journal of Pharmaceutical Sciences, 2010, 40, 441-447.	4.0	15
256	Interaction between phospholipids bilayer and chitosan in liposomes investigated by 31P NMR spectroscopy. Colloids and Surfaces B: Biointerfaces, 2010, 75, 294-299.	5.0	44
257	Lipid-Core Nanocapsules as a Nanomedicine for Parenteral Administration of Tretinoin: Development and <i>In Vitro</i> Antitumor Activity on Human Myeloid Leukaemia Cells. Journal of Biomedical Nanotechnology, 2010, 6, 214-223.	1.1	37
258	Characterization of <i> trans</i> -Resveratrol-Loaded Lipid-Core Nanocapsules and Tissue Distribution Studies in Rats. Journal of Biomedical Nanotechnology, 2010, 6, 694-703.	1.1	159
259	Microencapsulation of sodium alendronate reduces drug mucosal damage in rats. Drug Delivery, 2010, 17, 231-237.	5.7	13
260	Preparation of Drug-Loaded Polymeric Nanoparticles and Evaluation of the Antioxidant Activity Against Lipid Peroxidation. Methods in Molecular Biology, 2010, 610, 109-121.	0.9	7
261	Theospheres Based on <i>Theobroma Grandiflorum</i> Seed Butter: Development of Innovative Nanoparticles for Skin Application. Soft Materials, 2010, 8, 72-88.	1.7	6
262	Protective effects of indomethacin-loaded nanocapsules against oxygen-glucose deprivation in organotypic hippocampal slice cultures: Involvement of neuroinflammation. Neurochemistry International, 2010, 57, 629-636.	3.8	29
263	Pharmacokinetics evaluation of soft agglomerates for prompt delivery of enteric pantoprazole-loaded microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 275-280.	4.3	13
264	Chitosan Hydrogel Containing Capsaicinoids-Loaded Nanocapsules: An Innovative Formulation for Topical Delivery. Soft Materials, 2010, 8, 370-385.	1.7	36
265	Phospholipidâ^•chitosan self-assemblies analyzed by SAXS and Light Scattering. , 2009, , .		2
266	Formulações de atrazina em xerogéis: sÃntese e caracterização. Quimica Nova, 2009, 32, 1727-1733.	0.3	10
267	Estabilização do ácido lipoico via encapsulação em nanocápsulas poliméricas planejadas para aplicação cutânea. Quimica Nova, 2009, 32, 2078-2084.	0.3	33
268	Spray-drying technique to prepare innovative nanoparticulated formulations for drug administration: a brief overview. Brazilian Journal of Physics, 2009, 39, 205-209.	1.4	41
269	Nanoencapsulation as a Way to Control the Release and to Increase the Photostability of Clobetasol Propionate: Influence of the Nanostructured System. Journal of Biomedical Nanotechnology, 2009, 5, 254-263.	1.1	67
270	Size-Control of Poly(ε-caprolactone) Nanospheres by the Interface Effect of Ethanol on the Primary Emulsion Droplets. Journal of Nanoscience and Nanotechnology, 2009, 9, 4933-4941.	0.9	12

#	Article	IF	CITATIONS
271	Effects of indomethacinâ€loaded nanocapsules in experimental models of inflammation in rats. British Journal of Pharmacology, 2009, 158, 1104-1111.	5.4	104
272	Chitosan effect on the mesophase behavior of phosphatidylcholine supramolecular systems. Materials Science and Engineering C, 2009, 29, 463-469.	7.3	29
273	Agglomerates Containing Pantoprazole Microparticles: Modulating the Drug Release. AAPS PharmSciTech, 2009, 10, 335-345.	3.3	12
274	Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Letters, 2009, 281, 53-63.	7.2	126
275	Sustained Release from Lipid-Core Nanocapsules by Varying the Core Viscosity and the Particle Surface Area. Journal of Biomedical Nanotechnology, 2009, 5, 130-140.	1.1	135
276	Electroformation of Giant Vesicles from an Inverse Phase Precursor. Biophysical Journal, 2009, 96, 2719-2726.	0.5	36
277	Semisolid Formulation Containing a Nanoencapsulated Sunscreen: Effectiveness, <l>In Vitro</l> Photostability and Immune Response. Journal of Biomedical Nanotechnology, 2009, 5, 240-246.	1.1	52
278	High encapsulation efficiency of sodium alendronate in eudragit S100/HPMC blend microparticles. Quimica Nova, 2009, 32, 1170-1174.	0.3	10
279	The effect of polymeric wall on the permeability of drug-loaded nanocapsules. Materials Science and Engineering C, 2008, 28, 472-478.	7.3	46
280	Controlling the size of poly(hydroxybutyrate-co-hydroxyvalerate) nanoparticles prepared by emulsification–diffusion technique using ethanol as surface agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 324, 105-112.	4.7	52
281	Tretinoin-loaded nanocapsules: Preparation, physicochemical characterization, and photostability study. International Journal of Pharmaceutics, 2008, 352, 1-4.	5.2	123
282	Nanocapsule@xerogel microparticles containing sodium diclofenac: A new strategy to control the release of drugs. International Journal of Pharmaceutics, 2008, 358, 292-295.	5.2	20
283	Determining the simultaneous presence of drug nanocrystals in drug-loaded polymeric nanocapsule aqueous suspensions: A relation between light scattering and drug content. International Journal of Pharmaceutics, 2008, 359, 288-293.	5.2	39
284	Pharmacokinetic evaluation of indomethacin ethyl ester-loaded nanoencapsules. International Journal of Pharmaceutics, 2008, 363, 214-216.	5.2	14
285	Selective cytotoxicity of indomethacin and indomethacin ethyl ester-loaded nanocapsules against glioma cell lines: An in vitro study. European Journal of Pharmacology, 2008, 586, 24-34.	3.5	42
286	Incorporation in polymeric nanocapsules improves the antioxidant effect of melatonin against lipid peroxidation in mice brain and liver. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 64-71.	4.3	55
287	Increasing sodium pantoprazole photostability by microencapsulation: Effect of the polymer and the preparation technique. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 1014-1018.	4.3	23
288	Eudragit S100 microparticles containing sodium pantoprazole: drug release, intestinal absorption and in vitro/ex vivo correlation. Journal of Drug Delivery Science and Technology, 2008, 18, 323-326.	3.0	1

#	Article	IF	CITATIONS
289	Nanotechnology in the Treatment and Detection of Intraocular Cancers. Journal of Biomedical Nanotechnology, 2008, 4, 410-418.	1.1	22
290	Surface morphology of spray-dried nanoparticle-coated microparticles designed as an oral drug delivery system. Brazilian Journal of Chemical Engineering, 2008, 25, 389-398.	1.3	17
291	Caracterização da pureza de fosfatidilcolina da soja através de RMN de ¹H e de 31P. Quimica Nova, 2008, 31, 1856-1859.	0.3	29
292	MicropartÃculas nanorrevestidas contendo um fármaco modelo hidrofóbico: preparação em etapa única e caracterização biofarmacêutica. Quimica Nova, 2008, 31, 1966-1972.	0.3	12
293	Physicochemical characterization of a hydrophilic model drug-loaded PHBV microparticles obtained by the double emulsion/solvent evaporation technique. Journal of the Brazilian Chemical Society, 2008, 19, 1298-1305.	0.6	40
294	Development and physicochemical characterization of dexamethasone-loaded polymeric nanocapsule suspensions. Quimica Nova, 2008, 31, 1131-1136.	0.3	32
295	Pantoprazole-loaded Eudragit blended microparticles: preparation, characterization, in vitro gastro-resistance and in vivo anti-ulcer evaluation. Journal of Drug Delivery Science and Technology, 2007, 17, 113-118.	3.0	10
296	Structural model of polymeric nanospheres containing indomethacin ethyl ester and in vivo antiedematogenic activity. International Journal of Nanotechnology, 2007, 4, 454.	0.2	10
297	Polymeric Nanoparticles, Nanospheres and Nanocapsules, for Cutaneous Applications. Drug Target Insights, 2007, 2, 117739280700200.	1.4	307
298	Dexamethasone-loaded nanoparticle-coated microparticles: Correlation between in vitro drug release and drug transport across Caco-2 cell monolayers. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 18-30.	4.3	50
299	Microparticles prepared with poly(hydroxybutyrate-co-hydroxyvalerate) and poly(ε-caprolactone) blends to control the release of a drug model. Journal of Microencapsulation, 2007, 24, 175-186.	2.8	34
300	Human skin penetration and distribution of nimesulide from hydrophilic gels containing nanocarriers. International Journal of Pharmaceutics, 2007, 341, 215-220.	5.2	126
301	LUVs Recovered with Chitosan: A New Preparation for Vaccine Delivery. Journal of Liposome Research, 2007, 17, 155-163.	3.3	24
302	Enteric Controlled-Release Pantoprazole-Loaded Microparticles Prepared by Using Eudragit S100 and Poly(ε-caprolactone) Blend. Pharmaceutical Development and Technology, 2007, 12, 463-471.	2.4	21
303	Validação de metodologia analÃtica por cromatografia lÃquida para doseamento e estudo da estabilidade de pantoprazol sódico. Quimica Nova, 2007, 30, 1001-1005.	0.3	8
304	Physico-chemical characterization of nanocapsule polymeric wall using fluorescent benzazole probes. International Journal of Pharmaceutics, 2007, 338, 297-305.	5.2	73
305	Rate-modulating PHBHV/PCL microparticles containing weak acid model drugs. International Journal of Pharmaceutics, 2007, 345, 70-80.	5.2	53
306	Gastro-Resistant Microparticles Containing Sodium Pantoprazole: Stability Studies and In Vivo Anti-Ulcer Activity. Open Drug Delivery Journal, 2007, 1, 28-35.	2.0	21

#	Article	IF	CITATIONS
307	Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights, 2007, 2, 147-57.	1.4	82
308	Nanocapsules, nanoemulsion and nanodispersion containing melatonin: preparation, characterization and stability evaluation. Die Pharmazie, 2007, 62, 354-60.	0.5	13
309	Development of HPMC and Eudragit S100 blended microparticles containing sodium pantoprazole. Die Pharmazie, 2007, 62, 361-4.	0.5	13
310	Powder Characteristics of Pantoprazole Delivery Systems Produced in Different Spray-Dryer Scales. Drying Technology, 2006, 24, 339-348.	3.1	18
311	Preparation, characterization, and in vivo anti-ulcer evaluation of pantoprazole-loaded microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 198-204.	4.3	44
312	Nanoparticle-coated organic-inorganic microparticles: experimental design and gastrointestinal tolerance evaluation. Quimica Nova, 2006, 29, 990-996.	0.3	17
313	Physico-Chemical Characterization and In Vivo Evaluation of Indomethacin Ethyl Ester-Loaded Nanocapsules by PCS, TEM, SAXS, Interfacial Alkaline Hydrolysis and Antiedematogenic Activity. Journal of Nanoscience and Nanotechnology, 2006, 6, 3154-3162.	0.9	34
314	Diffusion and mathematical modeling of release profiles from nanocarriers. International Journal of Pharmaceutics, 2006, 313, 198-205.	5.2	101
315	Sodium pantoprazole-loaded enteric microparticles prepared by spray drying: Effect of the scale of production and process validation. International Journal of Pharmaceutics, 2006, 324, 10-18.	5.2	58
316	Structural Evaluation of Phospholipidic Nanovesicles Containing Small Amounts of Chitosan. Journal of Nanoscience and Nanotechnology, 2006, 6, 2425-2431.	0.9	34
317	Development of nanocapsule suspensions and nanocapsule spray-dried powders containing melatonin. Journal of the Brazilian Chemical Society, 2006, 17, 562-569.	0.6	53
318	Protective properties of melatonin-loaded nanoparticles against lipid peroxidation. International Journal of Pharmaceutics, 2005, 289, 209-213.	5.2	73
319	Production of soybean phosphatidylcholine–chitosan nanovesicles by reverse phase evaporation: a step by step study. Chemistry and Physics of Lipids, 2005, 138, 29-37.	3.2	71
320	Nanostructure-coated diclofenac-loaded microparticles: preparation, morphological characterization, in vitro release and in vivo gastrointestinal tolerance. Journal of the Brazilian Chemical Society, 2005, 16, 1233-1240.	0.6	23
321	Semisolid topical formulations containing nimesulide-loaded nanocapsules, nanospheres or nanoemulsion: development and rheological characterization. Die Pharmazie, 2005, 60, 900-4.	0.5	35
322	Degradação e estabilização do diclofenaco em nanocápsulas poliméricas. Quimica Nova, 2004, 27, 555-560.	0.3	10
323	Evaluation of lipases in the desymmetrization of meso-exo-3,5-dihydroxymethylenetricyclo[5.2.1.0(2,6)]decane and the synthesis of chiral derivatives. Journal of the Brazilian Chemical Society, 2004, 15, 22-27.	0.6	2
324	Peptide analogs containing the pentacyclo[5,4,0,02,6,03,6,05,9]undecane scaffold: conformational analysis in solution. Journal of Molecular Structure, 2004, 689, 49-60.	3.6	3

#	Article	IF	CITATIONS
325	Nanoparticle-coated microparticles: preparation and characterization. Journal of Microencapsulation, 2004, 21, 499-512.	2.8	27
326	Alkaline Hydrolysis as a Tool to Determine the Association form of Indomethacin in Nanocapsules Prepared with Poly(ε-Caprolactone). Current Drug Delivery, 2004, 1, 103-110.	1.6	30
327	Intramolecular Hydrogen Bonding in Depsipeptides Containing Endo-3,6- Tricyclo[6.2.1.02,7]undeca-4,9-diene-3,6-endo-diol. Current Drug Discovery Technologies, 2004, 1, 155-164.	1.2	0
328	Study of the kinetic resolution of (±)-10-exo-hydroxy-pentacyclo[6.2.1.13,6.02,7.05,9]dodeca-4-one by lipase catalysis and the intramolecular racemization of the pure enantiomer by thermal dyotropic reaction. Tetrahedron: Asymmetry, 2003, 14, 683-688.	1.8	3
329	Freeze-drying polymeric colloidal suspensions: nanocapsules, nanospheres and nanodispersion. A comparative study. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 501-505.	4.3	97
330	Caracterização e estabilidade fÃsico-quÃmica de sistemas poliméricos nanoparticulados para administração de fármacos. Quimica Nova, 2003, 26, 726-737.	0.3	281
331	Uliginosin B from Hypericum myrianthum. Biochemical Systematics and Ecology, 2002, 30, 989-991.	1.3	23
332	Spray-dried indomethacin-loaded polyester nanocapsules and nanospheres: development, stability evaluation and nanostructure models. European Journal of Pharmaceutical Sciences, 2002, 16, 305-312.	4.0	111
333	An efficient synthesis of enantiopure (+)- and (â^')-3-exo-amino-7,7-dimethoxynorbornan-2-exo-ols. Tetrahedron: Asymmetry, 2001, 12, 557-561.	1.8	17
334	Spray-dried diclofenac-loaded poly(epsilon-caprolactone) nanocapsules and nanospheres. Preparation and physicochemical characterization. Die Pharmazie, 2001, 56, 864-7.	0.5	30
335	Influence of Benzyl Benzoate as Oil Core on the Physicochemical Properties of Spray-Dried Powders from Polymeric Nanocapsules Containing Indomethacin. Drug Delivery, 2000, 7, 195-199.	5.7	48
336	Preparation and Characterization of Spray-Dried Polymeric Nanocapsules. Drug Development and Industrial Pharmacy, 2000, 26, 343-347.	2.0	50
337	Polymeric colloidal systems containing ethionamide: preparation and physico-chemical characterization. Die Pharmazie, 2000, 55, 527-30.	0.5	23
338	PeptÃdeos de conformação restrita induzida pela incorporação de unidades (aza)lactâmicas. Quimica Nova, 1999, 22, 828-837.	0.3	4
339	Efficient Synthesis of Conformationally Constrained Peptidomimetics Containing 2-Oxopiperazines1. Journal of Organic Chemistry, 1997, 62, 1016-1022.	3.2	40
340	Stereoselective synthesis of 1,3-disubstituted hexahydro-1,4-diazepin-2-ones. Tetrahedron Letters, 1997, 38, 5809-5810.	1.4	6