Young-Yong Noh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1063482/publications.pdf

Version: 2024-02-01

373 papers

19,766 citations

13854 67 h-index 127 g-index

412 all docs

412 docs citations

times ranked

412

16276 citing authors

#	Article	IF	CITATIONS
1	Recent progress in lactamâ€based polymer semiconductors for organic electronic devices. Journal of Polymer Science, 2022, 60, 429-485.	2.0	9
2	Toward color-selective printed organic photodetectors for high-resolution image sensors: From fundamentals to potential commercialization. Materials Science and Engineering Reports, 2022, 147, 100660.	14.8	28
3	Effect of Branching position of alkyl side chain on charge-transport characteristics of diketopyrrolopyrrole- and dichlorodithienylethene-based organic field-effect transistors. Organic Electronics, 2022, 101, 106403.	1.4	2
4	Pursuing Highâ€Performance Organic Fieldâ€Effect Transistors through Organic Salt Doping. Advanced Functional Materials, 2022, 32, .	7.8	14
5	Sodium Incorporation for Enhanced Performance of Two-Dimensional Sn-Based Perovskite Transistors. ACS Applied Materials & Samp; Interfaces, 2022, 14, 9363-9367.	4.0	14
6	High-performance inorganic metal halide perovskite transistors. Nature Electronics, 2022, 5, 78-83.	13.1	121
7	Modulation of vacancy-ordered double perovskite Cs2SnI6 for air-stable thin-film transistors. Cell Reports Physical Science, 2022, 3, 100812.	2.8	17
8	High-performance hysteresis-free perovskite transistors through anion engineering. Nature Communications, 2022, 13, 1741.	5.8	51
9	Molecular Doping Enabling Mobility Boosting of 2D Sn ²⁺ â€Based Perovskites. Advanced Functional Materials, 2022, 32, .	7.8	18
10	Recent progress in the development of backplane thin film transistors for information displays. Journal of Information Display, 2021, 22, 1-11.	2.1	60
11	Short Alkyl Chain Engineering Modulation on Naphthalene Flanked Diketopyrrolopyrrole toward Highâ€Performance Single Crystal Transistors and Organic Thin Film Displays. Advanced Electronic Materials, 2021, 7, 2000804.	2.6	18
12	Key Roles of Trace Oxygen Treatment for Highâ€Performance Znâ€Doped Cul pâ€Channel Transistors. Advanced Electronic Materials, 2021, 7, .	2.6	17
13	Pixellated Perovskite Photodiode on IGZO Thin Film Transistor Backplane for Low Dose Indirect X-Ray Detection. IEEE Journal of the Electron Devices Society, 2021, 9, 96-101.	1.2	11
14	Highly Reliable Organic Field-Effect Transistors with Molecular Additives for a High-Performance Printed Gas Sensor. ACS Applied Materials & Sensor. Interfaces, 2021, 13, 4278-4283.	4.0	17
15	Introducing an Organic Hole Transporting Material as a Bilayer to Improve the Efficiency and Stability of Perovskite Solar Cells. Macromolecular Research, 2021, 29, 149-156.	1.0	8
16	Effect of Monovalent Metal Iodide Additives on the Optoelectric Properties of Two-Dimensional Sn-Based Perovskite Films. Chemistry of Materials, 2021, 33, 2498-2505.	3.2	28
17	Engineering Copper lodide (Cul) for Multifunctional pâ€Type Transparent Semiconductors and Conductors. Advanced Science, 2021, 8, 2100546.	5.6	74
18	8â€4: Invited Paper: Transparent Zn Dopedâ€Cul for Highâ€Performance pâ€Channel Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2021, 52, 89-91.	0.1	0

#	Article	IF	Citations
19	Toward high-performance p-type, tin-based perovskite thin film transistors. Applied Physics Letters, 2021, 118, .	1.5	3
20	Recent progress on metal halide perovskite field-effect transistors. Journal of Information Display, 2021, 22, 257-268.	2.1	16
21	Inorganic pâ€Type Semiconductors: Engineering Copper Iodide (CuI) for Multifunctional pâ€Type Transparent Semiconductors and Conductors (Adv. Sci. 14/2021). Advanced Science, 2021, 8, 2170088.	5.6	0
22	Rationalizing the enhancement of the thermoelectric properties of PEDOT:PSS by secondary doping. Applied Physics Letters, 2021, 119, .	1.5	10
23	Enhanced Nâ€√ype Doping of a Naphthalene Diimide Based Copolymer by Modification of the Donor Unit. Advanced Electronic Materials, 2021, 7, 2100407.	2.6	10
24	A Lewis base and boundary passivation bifunctional additive for high performance lead-free layered-perovskite transistors and phototransistors. Materials Today Energy, 2021, 21, 100722.	2.5	15
25	High-Performance Layered Perovskite Transistors and Phototransistors by Binary Solvent Engineering. Chemistry of Materials, 2021, 33, 1174-1181.	3.2	29
26	Understanding, Optimizing, and Utilizing Nonideal Transistors Based on Organic or Organic Hybrid Semiconductors. Advanced Functional Materials, 2020, 30, 1903889.	7.8	49
27	Printable Semiconductors for Backplane TFTs of Flexible OLED Displays. Advanced Functional Materials, 2020, 30, 1904588.	7.8	136
28	Precise Extraction of Charge Carrier Mobility for Organic Transistors. Advanced Functional Materials, 2020, 30, 1904508.	7.8	34
29	Solution-processed organic single-crystalline semiconductors with a fence-like shape <i>via</i> ultrasound concussion. Journal of Materials Chemistry C, 2020, 8, 2589-2593.	2.7	2
30	Controlling the ambipolarity of thieno-benzo-isoindigo polymer-based transistors: the balance of face-on and edge-on populations. Journal of Materials Chemistry C, 2020, 8, 296-302.	2.7	23
31	Effect of molecular structure of benzo[1,2-b:4,5-b′]dithiophene-based push-pull type donor polymers on performance panchromatic organic photodiodes. Organic Electronics, 2020, 78, 105580.	1.4	8
32	1D-CoSe ₂ nanoarray: a designed structure for efficient hydrogen evolution and symmetric supercapacitor characteristics. Dalton Transactions, 2020, 49, 14191-14200.	1.6	42
33	Perovskite transistors clean up their act. Nature Electronics, 2020, 3, 662-663.	13.1	18
34	Enhanced efficiency and reduced hysteresis by TiO2 modification in high-performance perovskite solar cells. Organic Electronics, 2020, 86, 105922.	1.4	6
35	Solidâ€State Electrolyte Dielectrics Based on Exceptional Highâ€ <i>k</i> P(VDFâ€TrFEâ€CTFE) Terpolymer for Highâ€Performance Fieldâ€Effect Transistors. Advanced Materials Interfaces, 2020, 7, 2000842.	1.9	10
36	High-capacitance polyurethane ionogels for low-voltage operated organic transistors and pressure sensors. Journal of Materials Chemistry C, 2020, 8, 17107-17113.	2.7	23

3

#	Article	IF	Citations
37	Improved Electron Transport in Ambipolar Organic Field-Effect Transistors with PMMA/Polyurethane Blend Dielectrics. Macromolecular Research, 2020, 28, 1248-1252.	1.0	6
38	High-performance p-channel transistors with transparent Zn doped-Cul. Nature Communications, 2020, 11, 4309.	5.8	94
39	Highly Ambient-Stable Organic Thin-Film Transistors Fabricated Using Naphthalene Diimide and Thienylene–Vinylene–Thienylene-Based n-Type Polymers with Different Electron-Withdrawing Groups. Journal of Physical Chemistry C, 2020, 124, 20784-20793.	1.5	4
40	Molecule Charge Transfer Doping for pâ€Channel Solutionâ€Processed Copper Oxide Transistors. Advanced Functional Materials, 2020, 30, 2002625.	7.8	26
41	Flexible Bottom-Gated Organic Field-Effect Transistors Utilizing Stamped Polymer Layers from the Surface of Water. ACS Applied Materials & Surfaces, 2020, 12, 25092-25099.	4.0	14
42	Nonideal Transistors: Understanding, Optimizing, and Utilizing Nonideal Transistors Based on Organic or Organic Hybrid Semiconductors (Adv. Funct. Mater. 20/2020). Advanced Functional Materials, 2020, 30, 2070129.	7.8	2
43	Emerging Thinâ€Film Transistor Technologies and Applications. Advanced Functional Materials, 2020, 30, 2001678.	7.8	8
44	Printable Transistors: Printable Semiconductors for Backplane TFTs of Flexible OLED Displays (Adv.) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
45	pâ€Doping Methods: Molecule Charge Transfer Doping for pâ€Channel Solutionâ€Processed Copper Oxide Transistors (Adv. Funct. Mater. 24/2020). Advanced Functional Materials, 2020, 30, 2070151.	7.8	0
46	Impact of Humidity on the Performance and Stability of Solution-Processed Copper Oxide Transistors. IEEE Electron Device Letters, 2020, , 1-1.	2.2	6
47	Facile synthesis of cobalt–nickel sulfide thin film as a promising counter electrode for triiodide reduction in dye-sensitized solar cells. Energy, 2020, 202, 117730.	4.5	31
48	Understanding of copolymers containing pyridine and selenophene simultaneously and their polarity conversion in transistors. Materials Chemistry Frontiers, 2020, 4, 3567-3577.	3.2	6
49	Highâ€Performance and Reliable Leadâ€Free Layeredâ€Perovskite Transistors. Advanced Materials, 2020, 32, e2002717.	11.1	86
50	Role of Schottky Barrier and Access Resistance in Organic Field-Effect Transistors. Journal of Physical Chemistry Letters, 2020, 11, 1466-1472.	2.1	19
51	Approaching isotropic transfer integrals in crystalline organic semiconductors. Physical Review Materials, 2020, 4, .	0.9	5
52	Charge and thermoelectric transport mechanism in donor-acceptor copolymer films. Physical Review Research, 2020, 2, .	1.3	4
53	Pâ€17: Lowâ€Temperature, Solutionâ€Processed Inorganic pâ€Channel Cuâ€based Thinâ€Film Transistors and Circuits. Digest of Technical Papers SID International Symposium, 2020, 51, 1372-1374.	0.1	0
54	Bisâ€Diketopyrrolopyrrole and Carbazoleâ€Based Terpolymer for High Performance Organic Fieldâ€Effect Transistors and Infraâ€Red Photodiodes. Macromolecular Chemistry and Physics, 2019, 220, 1900287.	1.1	19

#	Article	IF	CITATIONS
55	Polyethylenimine ethoxylated interlayer-mediated ZnO interfacial engineering for high-performance and low-temperature processed flexible perovskite solar cells: A simple and viable route for one-step processed CH3NH3Pbl3. Journal of Power Sources, 2019, 438, 226956.	4.0	22
56	Polyol Reduction: A Low-Temperature Eco-Friendly Solution Process for p-Channel Copper Oxide-Based Transistors and Inverter Circuits. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33157-33164.	4.0	37
57	Microscopic observation of efficient charge transport processes across domain boundaries in donor-acceptor-type conjugated polymers. Communications Physics, 2019, 2, .	2.0	24
58	Naphthalene flanked diketopyrrolopyrrole: A new DPP family member and its comparative optoelectronic properties with thiophene- and furan- flanked DPP counterparts. Organic Electronics, 2019, 74, 290-298.	1.4	9
59	Understanding Thickness-Dependent Electrical Characteristics in Conjugated Polymer Transistors With Top-Gate Staggered Structure. IEEE Transactions on Electron Devices, 2019, 66, 2723-2728.	1.6	10
60	22.1: <i>Invited Paper:</i> Solution processable pâ€type metal halide semiconductors for high performance transparent pâ€channel thinâ€film transistors. Digest of Technical Papers SID International Symposium, 2019, 50, 215-215.	0.1	0
61	Effect of Backbone Sequence of a Naphthalene Diimide-Based Copolymer on Performance in n-Type Organic Thin-Film Transistors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35185-35192.	4.0	14
62	Exploring low-k dielectrics as structuring polymers for solid-state electrolyte-gated transistors. Organic Electronics, 2019, 75, 105434.	1.4	3
63	Controlling Ambipolar Charge Transport in Isoindigoâ€Based Conjugated Polymers by Altering Fluorine Substitution Position for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2019, 29, 1805994.	7.8	51
64	Redox-state modulated ORR activity of Cd-based Prussian blue analog frameworks transformed via anion exchange with controlled redox-state from CdCO3 cuboids. Journal of Electroanalytical Chemistry, 2019, 847, 113179.	1.9	9
65	Improving the Electrical Connection of n-Type Conjugated Polymers through Fluorine-Induced Robust Aggregation. Chemistry of Materials, 2019, 31, 4864-4872.	3.2	23
66	A General Approach to Probe Dynamic Operation and Carrier Mobility in Fieldâ€Effect Transistors with Nonuniform Accumulation. Advanced Functional Materials, 2019, 29, 1901700.	7.8	22
67	Synthesis and Characterization of Diketopyrrolopyrrole-Based Conjugated Polymers with Bithiophene and Biselenophene for Organic Thin Film Transistors. Journal of Nanoscience and Nanotechnology, 2019, 19, 6158-6163.	0.9	0
68	Polymer Electrolyte Blend Gate Dielectrics for High-Performance Ultrathin Organic Transistors: Toward Favorable Polymer Blend Miscibility and Reliability. ACS Applied Materials & Diterfaces, 2019, 11, 17610-17616.	4.0	26
69	Perovskite and Conjugated Polymer Wrapped Semiconducting Carbon Nanotube Hybrid Films for High-Performance Transistors and Phototransistors. ACS Nano, 2019, 13, 3971-3981.	7.3	151
70	Spontaneous Doping at the Polymer–Polymer Interface for High-Performance Organic Transistors. ACS Applied Materials & Doping at the Polymer–Polymer Interface for High-Performance Organic Transistors.	4.0	24
71	Transparent Inorganic Copper Bromide (CuBr) p-Channel Transistors Synthesized From Solution at Room Temperature. IEEE Electron Device Letters, 2019, 40, 769-772.	2.2	22
72	:Hydrogen Doping Oxide Transistors: Analysis of Ultrahigh Apparent Mobility in Oxide Fieldâ€Effect Transistors (Adv. Sci. 7/2019). Advanced Science, 2019, 6, 1970040.	5. 6	6

#	Article	IF	Citations
73	Kinetically Controlled Crystallization in Conjugated Polymer Films for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2019, 29, 1807786.	7.8	42
74	Analysis of Ultrahigh Apparent Mobility in Oxide Fieldâ€Effect Transistors. Advanced Science, 2019, 6, 1801189.	5.6	40
75	Progress of display performances: AR, VR, QLED, OLED, and TFT. Journal of Information Display, 2019, 20, 1-8.	2.1	92
76	Reliable Mobility Evaluation of Organic Field-Effect Transistors With Different Contact Metals. IEEE Electron Device Letters, 2019, 40, 605-608.	2.2	13
77	Control of Crystallite Orientation in Diketopyrrolopyrrole-Based Semiconducting Polymers via Tuning of Intermolecular Interactions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10751-10757.	4.0	20
78	Intrinsically distinct hole and electron transport in conjugated polymers controlled by intra and intermolecular interactions. Nature Communications, 2019, 10, 5226.	5.8	36
79	Towards efficient and stable perovskite solar cells employing non-hygroscopic F4-TCNQ doped TFB as the hole-transporting material. Nanoscale, 2019, 11, 19586-19594.	2.8	26
80	Self-powered reduced-dimensionality perovskite photodiodes with controlled crystalline phase and improved stability. Nano Energy, 2019, 57, 761-770.	8.2	43
81	Au-Pd bimetallic nanoparticles embedded highly porous Fenugreek polysaccharide based micro networks for catalytic applications. International Journal of Biological Macromolecules, 2019, 126, 352-358.	3.6	35
82	Facile synthesis and optoelectronic exploration of silylthiophene substituted benzodithiophene polymer for organic field effect transistors. Journal of Organometallic Chemistry, 2019, 880, 317-321.	0.8	7
83	Solution-processed inorganic p-channel transistors: Recent advances and perspectives. Materials Science and Engineering Reports, 2019, 135, 85-100.	14.8	74
84	Lewis acid-base adduct-type organic hole transport material for high performance and air-stable perovskite solar cells. Nano Energy, 2019, 58, 284-292.	8.2	40
85	Lithium benzoate doped high performance n-type diketopyrrolopyrrole based organic thin-film transistors. Dyes and Pigments, 2019, 162, 243-248.	2.0	12
86	Acceptor Unit Effects for Ambipolar Organic Field-Effect Transistors Based on TIPS-Benzodithiophene Copolymers. Macromolecular Research, 2019, 27, 90-95.	1.0	10
87	Hole-induced polymerized interfacial film of polythiophene as co-sensitizer and back-electron injection barrier layer in dye-sensitized TiO2 nanotube array. Journal of Alloys and Compounds, 2019, 781, 589-594.	2.8	11
88	Development of High Performance Printed Organic Transistors by Controlling Charge Carrier Density. Journal of Surface Analysis (Online), 2019, 26, 112-113.	0.1	0
89	High performance printed p-type metal halide and oxide thin film transistors (Conference) Tj ETQq1 1 0.784314	1 rgBT /Ove	rlogk 10 Tf 50
90	Room-temperature solution-synthesized p-type copper(I) iodide semiconductors for transparent thin film transistors and complementary electronics. Proceedings of the International Display Workshops, 2019, , 1631.	0.1	0

#	Article	IF	CITATIONS
91	Semiconducting carbon nanotube-based stretchable transistors. Proceedings of the International Display Workshops, 2019, , 1642.	0.1	O
92	Development of High Performance Semiconductor Inks for Printed Field-Effect Transistors For Flexible Display. Proceedings of the International Display Workshops, 2019, , 1592.	0.1	0
93	Development of High Performance Semiconductor Inks for Printed Field-Effect Transistors For Flexible Display. Proceedings of the International Display Workshops, 2019, , 1592.	0.1	0
94	Semiconducting carbon nanotube-based stretchable transistors. Proceedings of the International Display Workshops, 2019, , 1642.	0.1	0
95	Room-temperature solution-synthesized p-type copper(I) iodide semiconductors for transparent thin film transistors and complementary electronics. Proceedings of the International Display Workshops, 2019, , 1631.	0.1	0
96	Selective dispersion of high-purity semiconducting carbon nanotubes using indacenodithiophene-based conjugated polymer. Applied Physics Letters, 2018, 112, .	1.5	4
97	Well-defined alternative polymer semiconductor using large size regioregular building blocks as monomers: electrical and electrochemical properties. Journal of Materials Chemistry C, 2018, 6, 5662-5670.	2.7	9
98	Diffractive X-ray Waveguiding Reveals Orthogonal Crystalline Stratification in Conjugated Polymer Thin Films. Macromolecules, 2018, 51, 2979-2987.	2.2	29
99	Organic thin-film transistors with over 10 cm2/Vs mobility through low-temperature solution coating. Journal of Information Display, 2018, 19, 71-80.	2.1	9
100	Effect of vacuum metalized gate electrode in top-gate solid-state electrolyte-gated organic transistors. Organic Electronics, 2018, 55, 63-68.	1.4	6
101	Improved Charge Injection of Metal Oxide Thinâ€Film Transistors by Stacked Electrodes of Indium Tin Oxide Nanoparticles and Silver Nanowires. Advanced Electronic Materials, 2018, 4, 1700440.	2.6	12
102	Heterostructured semiconductor single-walled carbon nanotube films for solution-processed high-performance field-effect transistors. Semiconductor Science and Technology, 2018, 33, 035017.	1.0	6
103	Organic field-effect transistors processed by an environmentally friendly non-halogenated solvent blend. Journal of Materials Chemistry C, 2018, 6, 661-667.	2.7	29
104	High performance p-type chlorinated-benzothiadiazole-based polymer electrolyte gated organic field-effect transistors. Organic Electronics, 2018, 54, 255-260.	1.4	5
105	A selection rule of solvent for highly aligned diketopyrrolopyrrole-based conjugated polymer film for high performance organic field-effect transistors. Organic Electronics, 2018, 55, 6-14.	1.4	33
106	Draw Spinning of Waferâ€Scale Oxide Fibers for Electronic Devices. Advanced Electronic Materials, 2018, 4, 1700644.	2.6	13
107	Design of New Isoindigo-Based Copolymer for Ambipolar Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13774-13782.	4.0	20
108	Impact of Topology of Alkoxy Side Chain in Alkoxyphenylthiophene Subsituted Benzodithiophene Based 2D Conjugated Low Bandgap Polymers on Photophysical and Photovoltaic Properties. Macromolecular Research, 2018, 26, 500-505.	1.0	9

#	Article	IF	Citations
109	Ultrasensitive artificial synapse based on conjugated polyelectrolyte. Nano Energy, 2018, 48, 575-581.	8.2	85
110	Interfacial Engineering of Nanoporous Architectures in Ga2O3 Film toward Self-Aligned Tubular Nanostructure with an Enhanced Photocatalytic Activity on Water Splitting. Langmuir, 2018, 34, 4575-4583.	1.6	11
111	Low-voltage operated solid-state electrolyte-gated ambipolar organic field-effect transistors. Organic Electronics, 2018, 52, 257-263.	1.4	10
112	Study of PEDOT and analogous polymer film as back-electron injection barrier and electrical charge storing materials. Materials Letters, 2018, 211, 1-4.	1.3	4
113	Electrospun <i>p</i> -Type Nickel Oxide Semiconducting Nanowires for Low-Voltage Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25841-25849.	4.0	47
114	Selenophene based benzodithiophene polymers as potential candidates for optoelectronic applications. Dyes and Pigments, 2018, 149, 639-643.	2.0	10
115	A Highâ€ <i>k</i> Fluorinated P(VDFâ€TrFE)â€ <i>g</i> â€PMMA Gate Dielectric for Highâ€Performance Flexible Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1704780.	7.8	55
116	An enhanced electrochemical energy conversion behavior of thermally treated thin film of 1-dimensional CoTe synthesized from aqueous solution at room temperature. Electrochimica Acta, 2018, 260, 365-371.	2.6	29
117	Effect of pre-aggregation in solution state on the performance of organic field-effect transistors with indacenodithiophene-co-benzothiadiazole. Organic Electronics, 2018, 53, 111-116.	1.4	9
118	Uniaxial Alignment of Conjugated Polymer Films for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, e1705463.	11.1	147
119	Doping: A Key Enabler for Organic Transistors. Advanced Materials, 2018, 30, e1801830.	11.1	141
120	Baking soda: an ultra-cheap and air stable electron injection layer for organic electronic devices. Journal of Materials Chemistry C, 2018, 6, 12871-12878.	2.7	8
121	Oxygen reduction reaction on nickel-based Prussian blue analog frameworks synthesized via electrochemical anodization route. Journal of Electroanalytical Chemistry, 2018, 828, 80-85.	1.9	17
122	Efficiency Exceeding 20% in Perovskite Solar Cells with Sideâ€Chain Liquid Crystalline Polymer–Doped Perovskite Absorbers. Advanced Energy Materials, 2018, 8, 1801637.	10.2	48
123	Recent Progress on Highâ€Capacitance Polymer Gate Dielectrics for Flexible Lowâ€Voltage Transistors. Advanced Functional Materials, 2018, 28, 1802201.	7.8	139
124	Essential Effects on the Mobility Extraction Reliability for Organic Transistors. Advanced Functional Materials, 2018, 28, 1803907.	7.8	54
125	Donor unit effect on DPP based organic field-effect transistor performance. Dyes and Pigments, 2018, 158, 306-311.	2.0	12
126	Roomâ€Temperature Solutionâ€Synthesized pâ€Type Copper(I) lodide Semiconductors for Transparent Thinâ€Film Transistors and Complementary Electronics. Advanced Materials, 2018, 30, e1802379.	11.1	125

#	Article	IF	CITATIONS
127	Isoindigo benzodifurandione based conjugated polymers for high performance organic field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 7822-7829.	2.7	14
128	Benzyl viologen as an n-type dopant for organic semiconductors. Organic Electronics, 2018, 62, 572-580.	1.4	17
129	Effect of donor units in methylated DPP-based polymers on performance of organic field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 10464-10471.	2.7	9
130	Impact of Hydroxyl Groups Boosting Heterogeneous Nucleation on Perovskite Grains and Photovoltaic Performances. Journal of Physical Chemistry C, 2018, 122, 16630-16638.	1.5	33
131	Sequential Fluorination on Napthaleneamide-Based Conjugated Polymers and Their Impact on Charge Transport Properties. Macromolecules, 2018, 51, 5530-5536.	2.2	20
132	Electronic Devices Based on Oxide Thin Films Fabricated by Fiber-to-Film Process. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 18057-18065.	4.0	14
133	Difluorobenzothiadiazole and Selenophene-Based Conjugated Polymer Demonstrating an Effective Hole Mobility Exceeding 5 cm ² V ^{$\hat{a} \in 1 < \text{sup} < s$}	4.0	22
134	Transparent Electronics: Roomâ€Temperature Solutionâ€Synthesized pâ€Type Copper(I) lodide Semiconductors for Transparent Thinâ€Film Transistors and Complementary Electronics (Adv. Mater.) Tj ETQq0 (O OngiBT /C	Ovenbock 10 T
135	Naphthalene flanked diketopyrrolopyrrole based organic semiconductors for high performance organic field effect transistors. New Journal of Chemistry, 2018, 42, 12374-12385.	1.4	29
136	Highly π-extended small molecules with bis(alkylthio)methylene side chains for organic field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 7604-7611.	2.7	14
137	Solution Processed Metal Oxide Highâ€ê Dielectrics for Emerging Transistors and Circuits. Advanced Materials, 2018, 30, e1706364.	11.1	158
138	Flexible and Printed PPG Sensors for Estimation of Drowsiness. IEEE Transactions on Electron Devices, 2018, 65, 2997-3004.	1.6	33
139	Water-Gated n-Type Organic Field-Effect Transistors for Complementary Integrated Circuits Operating in an Aqueous Environment. ACS Omega, 2017, 2, 1-10.	1.6	35
140	Schottky Barrier in Organic Transistors. IEEE Transactions on Electron Devices, 2017, 64, 1932-1943.	1.6	42
141	Diketopyrrolopyrrole-based conjugated polymer for printed organic field-effect transistors and gas sensors. Dyes and Pigments, 2017, 140, 244-249.	2.0	33
142	Flexible Organic Amplifiers. IEEE Transactions on Electron Devices, 2017, 64, 1944-1954.	1.6	8
143	A facile way to pattern PEDOT:PSS film as an electrode for organic devices. Organic Electronics, 2017, 44, 99-105.	1.4	28
144	Ultrahigh Mobility in Solutionâ€Processed Solidâ€State Electrolyteâ€Gated Transistors. Advanced Materials, 2017, 29, 1605685.	11.1	95

#	Article	IF	CITATIONS
145	Highly Sensitive Flexible NH ₃ Sensors Based on Printed Organic Transistors with Fluorinated Conjugated Polymers. ACS Applied Materials & Interfaces, 2017, 9, 7322-7330.	4.0	59
146	Improved ambipolar charge injection in organic field-effect transistors with low cost metal electrode using polymer sorted semiconducting carbon nanotubes. Organic Electronics, 2017, 46, 28-34.	1.4	15
147	Highly aligned conjugated polymer films prepared by rotation coating for high-performance organic field-effect transistors. Applied Physics Letters, 2017, 110, .	1.5	16
148	Mechanical Stability of Organic Field-Effect Transistors on Ultra-Thin Polymer Substrate. Journal of Nanoscience and Nanotechnology, 2017, 17, 5679-5682.	0.9	0
149	Anodically Grown Binder-Free Nickel Hexacyanoferrate Film: Toward Efficient Water Reduction and Hexacyanoferrate Film Based Full Device for Overall Water Splitting. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18015-18021.	4.0	56
150	Controlling organization of conjugated polymer films from binary solvent mixtures for high performance organic field-effect transistors. Organic Electronics, 2017, 41, 198-204.	1.4	9
151	Green synthesis of palladium nanoparticles using fenugreek tea and their catalytic applications in organic reactions. Materials Letters, 2017, 205, 138-141.	1.3	40
152	Chlorinated 2,1,3-Benzothiadiazole-Based Polymers for Organic Field-Effect Transistors. Macromolecules, 2017, 50, 4649-4657.	2.2	33
153	High Performance Solution Processed Organic Field Effect Transistors with Novel Diketopyrrolopyrrole-Containing Small Molecules. Scientific Reports, 2017, 7, 164.	1.6	51
154	Effect of pre-aggregation in conjugated polymer solution on performance of diketopyrrolopyrrole-based organic field-effect transistors. Dyes and Pigments, 2017, 145, 270-276.	2.0	10
155	High performance and stable naphthalene diimide based n -channel organic field-effect transistors by polyethylenimine doping. Dyes and Pigments, 2017, 142, 323-329.	2.0	18
156	Parylene based bilayer flexible gate dielectric layer for top-gated organic field-effect transistors. Organic Electronics, 2017, 46, 14-21.	1.4	23
157	A unified understanding of charge transport in organic semiconductors: the importance of attenuated delocalization for the carriers. Materials Horizons, 2017, 4, 608-618.	6.4	146
158	Novel Solid-State Solar Cell Based on Hole-Conducting MOF-Sensitizer Demonstrating Power Conversion Efficiency of 2.1%. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12930-12935.	4.0	51
159	Multifunctional Organicâ€Semiconductor Interfacial Layers for Solutionâ€Processed Oxideâ€Semiconductor Thinâ€Film Transistor. Advanced Materials, 2017, 29, 1607055.	11.1	47
160	Highly soluble small-molecule organic semiconductor with trihexylsilyloxy side chain for high-performance organic field-effect transistors with mobility of up to 3.10Âcm 2 ÂV â^1 s â^1. Dyes and Pigments, 2017, 142, 17-23.	2.0	26
161	Ambipolar Small-Molecule:Polymer Blend Semiconductors for Solution-Processable Organic Field-Effect Transistors. ACS Applied Materials & Effect Transistors.	4.0	40
162	Plasmon-mediated wavelength-selective enhanced photoresponse in polymer photodetectors. Journal of Materials Chemistry C, 2017, 5, 399-407.	2.7	23

#	Article	IF	Citations
163	Fluorinated benzothiadiazole and indacenodithieno[3,2-b]thiophene based regioregular-conjugated copolymers for ambipolar organic field-effect transistors and inverters. RSC Advances, 2017, 7, 1110-1117.	1.7	17
164	Generating one-dimensional micro- or nano-structures with in-plane alignment by vapor-driven wetting kinetics. Materials Horizons, 2017, 4, 259-267.	6.4	9
165	Improvement charge injection in P-type polymer field-effect transistors with low-cost molybdenum electrodes through dodecanoic acid self assembled monolayer. Molecular Crystals and Liquid Crystals, 2017, 652, 207-212.	0.4	5
166	Diketopyrrolopyrrole-based polymer transistors for hazardous volatile organic compound detection. Organic Electronics, 2017, 51, 264-268.	1.4	14
167	Self-aligned patterning of conductive films on plastic substrates for electrodes of flexible electronics. Journal of Materials Chemistry C, 2017, 5, 10900-10906.	2.7	17
168	Modulation of Majority Charge Carrier from Hole to Electron by Incorporation of Cyano Groups in Diketopyrrole-Based Polymers. Macromolecules, 2017, 50, 7550-7558.	2.2	62
169	Role of ITO nanoparticles embedded into electrospun ITO nanofibers. Journal Physics D: Applied Physics, 2017, 50, 475305.	1.3	4
170	Development of low temperature stoichiometric solution combustion derived transparent conductive ternary zinc tin co-doped indium oxide electrodes. RSC Advances, 2017, 7, 48253-48262.	1.7	19
171	Thiophene-Thiazole-Based Semiconducting Copolymers for High-Performance Polymer Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38728-38736.	4.0	7
172	Influence of Simultaneous Tuning of Molecular Weights and Alkyl Substituents of Poly(thienoisoindigo- <i>alt</i> -naphthalene)s on Morphology and Change Transport Properties. ACS Applied Materials & Diterfaces, 2017, 9, 30755-30763.	4.0	14
173	Selective sorting of semiconducting single-walled carbon nanotubes using thienylenevinylene-based conjugated polymers with high alkyl side-chain density. Carbon, 2017, 125, 571-581.	5.4	12
174	Toward High Conductivity of Electrospun Indium Tin Oxide Nanofibers with Fiber Morphology Dependent Surface Coverage: Postannealing and Polymer Ratio Effects. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34305-34313.	4.0	13
175	Solution-processed polymer-sorted semiconducting carbon nanotube network transistors with low- <i>k</i> 倊/high- <i>k</i> bilayer polymer dielectrics. Applied Physics Letters, 2017, 111, .	1.5	15
176	Device Physics of Contact Issues for the Overestimation and Underestimation of Carrier Mobility in Field-Effect Transistors. Physical Review Applied, 2017, 8, .	1.5	183
177	Conjugated Side Chain Tuning Effect of Indacenodithieno[3,2â€∢i>b∢/i>]thiophene and Fluoroâ€Benzothiadiazoleâ€Based Regioregular Copolymers for Highâ€Performance Organic Fieldâ€Effect Transistors. Macromolecular Chemistry and Physics, 2017, 218, 1700225.	1.1	11
178	Organic thin film transistor with conjugated polymers for highly sensitive gas sensors. Macromolecular Research, 2017, 25, 489-495.	1.0	46
179	Silaindacenodithiophene based organic semiconductor for high performance organic field-effect transistors. Dyes and Pigments, 2017, 146, 520-528.	2.0	6
180	Conjugated Polymers: Exploring the Charge Transport in Conjugated Polymers (Adv. Mater. 41/2017). Advanced Materials, 2017, 29, .	11.1	2

#	Article	IF	Citations
181	Manganese Oxide Nanoparticle as a New p-Type Dopant for High-Performance Polymer Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24763-24770.	4.0	14
182	Exploring the Charge Transport in Conjugated Polymers. Advanced Materials, 2017, 29, 1702729.	11.1	70
183	Gradual Controlling the Work Function of Metal Electrodes by Water Dissolved Mixed Interlayers for Ambipolar Polymer Field-Effect Transistors. Journal of Nanoscience and Nanotechnology, 2017, 17, 5709-5713.	0.9	2
184	Synthesis of Naphthalenediimide-Based Co-Polymers for $\langle i \rangle$ n $\langle i \rangle$ -Channel Organic Field-Effect Transistors. Science of Advanced Materials, 2017, 9, 2004-2012.	0.1	2
185	Synthesis and Characterization of Pyrrolo[3,4-d]Pyridazine-5,7-Dione-Based Conjugated Polymers for Organic Thin-Film Transistors. Journal of Nanoscience and Nanotechnology, 2017, 17, 7194-7199.	0.9	0
186	A self-aligned high resolution patterning process for large area printed electronics. Journal of Materials Chemistry C, 2017, 5, 6467-6470.	2.7	16
187	Naphthalene diimide-based polymeric semiconductors. Effect of chlorine incorporation and n-channel transistors operating in water- CORRIGENDUM. MRS Communications, 2016, 6, 69-69.	0.8	1
188	Control of Threshold Voltage for Top-Gated Ambipolar Field-Effect Transistor by Gate Buffer Layer. ACS Applied Materials & Date of the Control of the Control of Threshold Voltage for Top-Gated Ambipolar Field-Effect Transistor by Gate Buffer Layer.	4.0	10
189	71-5: In-Depth Study on Large-Area Bar-Printing and Selective-Area Direct Patterning of Metal Oxide Dielectrics for High-Performance Transistor Application. Digest of Technical Papers SID International Symposium, 2016, 47, 966-969.	0.1	1
190	71-3: <i>Invited Paper</i> : Bar-coated Ultra-thin Conjugated Polymer Films for Large Area Transparent Transistors and Highly Sensitive Chemical Sensors. Digest of Technical Papers SID International Symposium, 2016, 47, 960-961.	0.1	2
191	Highâ€Mobility Naphthalene Diimide and Selenopheneâ€Vinyleneâ€Selenopheneâ€Based Conjugated Polymer: nâ€Channel Organic Fieldâ€Effect Transistors and Structure–Property Relationship. Advanced Functional Materials, 2016, 26, 4984-4997.	7.8	75
192	Chemical Sensors: Precisely Controlled Ultrathin Conjugated Polymer Films for Large Area Transparent Transistors and Highly Sensitive Chemical Sensors (Adv. Mater. 14/2016). Advanced Materials, 2016, 28, 2844-2844.	11.1	2
193	Naphthalene diimide-based polymeric semiconductors. Effect of chlorine incorporation and n-channel transistors operating in water. MRS Communications, 2016, 6, 47-60.	0.8	29
194	Ultrafiltration: Purification of PEDOT:PSS by Ultrafiltration for Highly Conductive Transparent Electrode of All-Printed Organic Devices (Adv. Mater. 46/2016). Advanced Materials, 2016, 28, 10106-10106.	11.1	3
195	Enhanced hole extraction by interaction between Cul and MoO3 in the hole transport layer of organic photovoltaic devices. Organic Electronics, 2016, 32, 200-207.	1.4	23
196	High-Field-Effect Mobility of Low-Crystallinity Conjugated Polymers with Localized Aggregates. Journal of the American Chemical Society, 2016, 138, 8096-8103.	6.6	217
197	A simple structured and efficient triazine-based molecule as an interfacial layer for high performance organic electronics. Energy and Environmental Science, 2016, 9, 2595-2602.	15.6	45
198	Dicyanomethylene-quinoid vs. dicyanovinyl-benzenoid organic semiconductors: Understanding structure-property correlations in mesomerism-like forms. Organic Electronics, 2016, 37, 402-410.	1.4	14

#	Article	IF	CITATIONS
199	High Performance Organic Field-Effect Transistor with Low-Temperature Processed diF-TESADT Large Crystal for Flexible Electronics. Journal of Nanoscience and Nanotechnology, 2016, 16, 8470-8472.	0.9	O
200	Purification of PEDOT:PSS by Ultrafiltration for Highly Conductive Transparent Electrode of Allâ€Printed Organic Devices. Advanced Materials, 2016, 28, 10149-10154.	11,1	66
201	Planarâ€Processed Polymer Transistors. Advanced Materials, 2016, 28, 8531-8537.	11.1	60
202	An improvement of performance in n-channel organic field effect transistors with N-phenyl[60]fulleropyrrolidines by molecular doping. Physical Chemistry Chemical Physics, 2016, 18, 23904-23909.	1.3	11
203	Crosslinked polymer-mixture gate insulator for high-performance organic thin-film transistors. Organic Electronics, 2016, 36, 171-176.	1.4	20
204	Systematic Study of Widely Applicable Nâ€Doping Strategy for Highâ€Performance Solutionâ€Processed Fieldâ€Effect Transistors. Advanced Functional Materials, 2016, 26, 7886-7894.	7.8	53
205	Solution processable PEDOT:PSS based hybrid electrodes for organic field effect transistors. Organic Electronics, 2016, 37, 352-357.	1.4	21
206	Phenylquinoline Derivatives as Efficient Interfacial Layer Materials for Highâ€Performance Organic Electronic Devices. Advanced Electronic Materials, 2016, 2, 1600086.	2.6	13
207	Favorable Molecular Orientation Enhancement in Semiconducting Polymer Assisted by Conjugated Organic Small Molecules. Advanced Functional Materials, 2016, 26, 8527-8536.	7.8	18
208	Universal diffusion-limited injection and the hook effect in organic thin-film transistors. Scientific Reports, 2016, 6, 29811.	1.6	23
209	Synthesis and optoelectronic properties of new acceptor-donor-acceptor type solution processed conjugated small molecules for optoelectronics. Molecular Crystals and Liquid Crystals, 2016, 635, 57-66.	0.4	3
210	Effect of Polymer Gate Dielectrics on Charge Transport in Carbon Nanotube Network Transistors: Low- <i>k</i> Insulator for Favorable Active Interface. ACS Applied Materials & Interfaces, 2016, 8, 32421-32431.	4.0	35
211	P-type doped ambipolar polymer transistors by direct charge transfer from a cationic organic dye Pyronin B ferric chloride. Organic Electronics, 2016, 39, 229-235.	1.4	15
212	Thickness dependence of a CuI hole transport layer on initial photostability and photovoltaic performance of organic solar cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2431-2437.	0.8	15
213	Large Enhancement of Carrier Transport in Solutionâ€Processed Fieldâ€Effect Transistors by Fluorinated Dielectric Engineering. Advanced Materials, 2016, 28, 518-526.	11.1	87
214	Precisely Controlled Ultrathin Conjugated Polymer Films for Large Area Transparent Transistors and Highly Sensitive Chemical Sensors. Advanced Materials, 2016, 28, 2752-2759.	11.1	179
215	Organic nano-floating-gate transistor memory with metal nanoparticles. Nano Convergence, 2016, 3, 10.	6.3	46
216	New bulky side chain substituted benzodithiophene based 2D-conjugated polymers for optoelectronic applications. Polymer Bulletin, 2016, 73, 2567-2581.	1.7	3

#	Article	IF	Citations
217	Effect of Donor Molecular Structure and Gate Dielectric on Chargeâ€Transporting Characteristics for Isoindigoâ€Based Donor–Acceptor Conjugated Polymers. Advanced Functional Materials, 2016, 26, 4695-4703.	7.8	30
218	Facile Route To Control the Ambipolar Transport in Semiconducting Polymers. Chemistry of Materials, 2016, 28, 2287-2294.	3.2	53
219	Improved electron transport properties of n-type naphthalenediimide polymers through refined molecular ordering and orientation induced by processing solvents. Physical Chemistry Chemical Physics, 2016, 18, 12486-12493.	1.3	13
220	Bar-coated high-performance organic thin-film transistors based on ultrathin PDFDT polymer with molecular weight independence. Organic Electronics, 2016, 29, 88-93.	1.4	15
221	Charge transport dependent high open circuit voltage tandem organic photovoltaic cells with low temperature deposited HATCN-based charge recombination layers. Physical Chemistry Chemical Physics, 2016, 18, 4045-4050.	1.3	3
222	Synthesis of Fullerene Derivatives for the Application to Organic Photovoltaic Cell and n-Channel Organic Thin-Film Transistors. Science of Advanced Materials, 2016, 8, 450-457.	0.1	2
223	Thinâ€Film Transistors: Largeâ€Scale Precise Printing of Ultrathin Sol–Gel Oxide Dielectrics for Directly Patterned Solutionâ€Processed Metal Oxide Transistor Arrays (Adv. Mater. 34/2015). Advanced Materials, 2015, 27, 5091-5091.	11.1	0
224	Simultaneous Improvement of Hole and Electron Injection in Organic Field-effect Transistors by Conjugated Polymer-wrapped Carbon Nanotube Interlayers. Scientific Reports, 2015, 5, 10407.	1.6	28
225	Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory. Scientific Reports, 2015, 5, 12299.	1.6	50
226	Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics. Scientific Reports, 2015, 5, 14520.	1.6	12
227	Largeâ€Scale Precise Printing of Ultrathin Sol–Gel Oxide Dielectrics for Directly Patterned Solutionâ€Processed Metal Oxide Transistor Arrays. Advanced Materials, 2015, 27, 5043-5048.	11.1	117
228	Solution-processed high-LUMO-level polymers inn-type organic field-effect transistors: a comparative study as a semiconducting layer, dielectric layer, or charge injection layer. Semiconductor Science and Technology, 2015, 30, 044007.	1.0	4
229	Printed organic thin-film transistor-based integrated circuits. Semiconductor Science and Technology, 2015, 30, 064003.	1.0	38
230	Fully-printed, all-polymer, bendable and highly transparent complementary logic circuits. Organic Electronics, 2015, 20, 132-141.	1.4	68
231	Quinoidal Molecules as a New Class of Ambipolar Semiconductor Originating from Amphoteric Redox Behavior. Advanced Functional Materials, 2015, 25, 1146-1156.	7.8	74
232	A Balanced Face-On to Edge-On Texture Ratio in Naphthalene Diimide-Based Polymers with Hybrid Siloxane Chains Directs Highly Efficient Electron Transport. Macromolecules, 2015, 48, 5179-5187.	2.2	82
233	Facile Routes To Improve Performance of Solution-Processed Amorphous Metal Oxide Thin Film Transistors by Water Vapor Annealing. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13289-13294.	4.0	47
234	Controlling charge injection properties in polymer field-effect transistors by incorporation of solution processed molybdenum trioxide. Physical Chemistry Chemical Physics, 2015, 17, 20160-20167.	1.3	16

#	Article	IF	Citations
235	High-performance diketopyrrolopyrrole-based organic field-effect transistors for flexible gas sensors. Organic Electronics, 2015, 23, 76-81.	1.4	44
236	Development of high-performance printed organic field-effect transistors and integrated circuits. Physical Chemistry Chemical Physics, 2015, 17, 26553-26574.	1.3	100
237	Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nature Materials, 2015, 14, 628-635.	13.3	229
238	A Highly Planar Fluorinated Benzothiadiazoleâ€Based Conjugated Polymer for Highâ€Performance Organic Thinâ€Film Transistors. Advanced Materials, 2015, 27, 3045-3052.	11.1	159
239	Microchannel Wetting for Controllable Patterning and Alignment of Silver Nanowire with High Resolution. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21433-21441.	4.0	60
240	On the Origin of Improved Charge Transport in Double-Gate In–Ga–Zn–O Thin-Film Transistors: A Low-Frequency Noise Perspective. IEEE Electron Device Letters, 2015, 36, 1040-1043.	2.2	14
241	Direct and quantitative understanding of the non-Ohmic contact resistance in organic and oxide thin-film transistors. Organic Electronics, 2015, 27, 253-258.	1.4	43
242	Effect of electron-donating unit on crystallinity and charge transport in organic field-effect transistors with thienoisoindigo-based small molecules. Organic Electronics, 2015, 26, 151-157.	1.4	15
243	Preface: Printed electronics. Semiconductor Science and Technology, 2015, 30, 100301.	1.0	1
244	High-Performance Organic Field-Effect Transistors with Directionally Aligned Conjugated Polymer Film Deposited from Pre-Aggregated Solution. Chemistry of Materials, 2015, 27, 8345-8353.	3.2	156
245	Contact engineering in organic field-effect transistors. Materials Today, 2015, 18, 79-96.	8.3	407
246	Effect of Doping Concentration on Microstructure of Conjugated Polymers and Characteristics in Nâ€Type Polymer Fieldâ€Effect Transistors. Advanced Functional Materials, 2015, 25, 758-767.	7.8	54
247	Solution processed vanadium pentoxide as charge injection layer in polymer field-effect transistor with Mo electrodes. Organic Electronics, 2015, 17, 66-76.	1.4	17
248	A Timely Synthetic Tailoring of Biaxially Extended Thienylenevinyleneâ€Like Polymers for Systematic Investigation on Fieldâ€Effect Transistors. Advanced Functional Materials, 2015, 25, 586-596.	7.8	54
249	Fabrication of spray-printed organic non-volatile memory devices for low cost electronic applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 191, 51-56.	1.7	9
250	Alkylated Fullerene Derivatives for Solution-Processable Organic Thin-Film Transistors and Bulkheterojunction Solar Cells. Journal of Nanoscience and Nanotechnology, 2014, 14, 2515-2519.	0.9	1
251	Organic Field-Effect Transistors by a Solvent Vapor Annealing Process. Journal of Nanoscience and Nanotechnology, 2014, 14, 1476-1493.	0.9	15
252	Organic integrated circuits for information storage based on ambipolar polymers and charge injection engineering. Applied Physics Letters, 2014, 104, 153303.	1.5	24

#	Article	IF	Citations
253	Significant roles of low-temperature post-metallization annealing in solution-processed oxide thin-film transistors. Applied Physics Letters, 2014, 105, .	1.5	24
254	Dramatic Inversion of Charge Polarity in Diketopyrrolopyrroleâ€Based Organic Fieldâ€Effect Transistors via a Simple Nitrile Group Substitution. Advanced Materials, 2014, 26, 7300-7307.	11.1	224
255	Diels-Alder Crosslinked Block-Copolymer Gate Dielectrics for Low Voltage Operated Top-Gate Organic Field-Effect Transistors. Molecular Crystals and Liquid Crystals, 2014, 598, 69-77.	0.4	1
256	High-Performance Printed Organic Ambipolar Complementary Inverters with Polyazine Containing Diketopyrrolopyrrole. Molecular Crystals and Liquid Crystals, 2014, 600, 123-128.	0.4	1
257	A facile approach to improve light extraction for organic light emitting diodes via azobenzene surface relief gratings. Japanese Journal of Applied Physics, 2014, 53, 08NF02.	0.8	6
258	Development of high-performance printed polymer field-effect transistors for flexible display. Journal of Information Display, 2014, 15, 213-229.	2.1	12
259	Side chains contributions to characteristics of resistive memory based on water-soluble polyfluorenes: Effects of structure and length of side pendant group. Organic Electronics, 2014, 15, 1290-1298.	1.4	14
260	Evaluating injection and transport properties of organic field-effect transistors by the convergence point in transfer-length method. Applied Physics Letters, 2014, 104, .	1.5	20
261	Metal evaporation dependent charge injection in organic transistors. Organic Electronics, 2014, 15, 1738-1744.	1.4	32
262	Development of high-performance n-type organic thin-film transistors using a small-molecule polymer blend. Thin Solid Films, 2014, 556, 414-418.	0.8	14
263	Organic Field-Effect Transistors: Dramatic Inversion of Charge Polarity in Diketopyrrolopyrrole-Based Organic Field-Effect Transistors via a Simple Nitrile Group Substitution (Adv. Mater. 43/2014). Advanced Materials, 2014, 26, 7282-7282.	11.1	1
264	Bar-coated polymer ambipolar field-effect transistors and complementary integrated circuits for large area electronics. , 2014 , , .		1
265	Stable charge storing in two-dimensional MoS ₂ nanoflake floating gates for multilevel organic flash memory. Nanoscale, 2014, 6, 12315-12323.	2.8	64
266	Evolution in crystal structure and electrical performance of thiophene-based polymer field effect transistors: A remarkable difference between thermal and solvent vapor annealing. Organic Electronics, 2014, 15, 1972-1982.	1.4	27
267	Benzodipyrrolidone (BDP)-Based Polymer Semiconductors Containing a Series of Chalcogen Atoms: Comprehensive Investigation of the Effect of Heteroaromatic Blocks on Intrinsic Semiconducting Properties. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4872-4882.	4.0	30
268	Control of Ambipolar and Unipolar Transport in Organic Transistors by Selective Inkjetâ€Printed Chemical Doping for High Performance Complementary Circuits. Advanced Functional Materials, 2014, 24, 6252-6261.	7.8	116
269	Gradual Controlling the Work Function of Metal Electrodes by Solutionâ€Processed Mixed Interlayers for Ambipolar Polymer Fieldâ€Effect Transistors and Circuits. Advanced Functional Materials, 2014, 24, 6484-6491.	7.8	32
270	Regulating Charge Injection in Ambipolar Organic Field-Effect Transistors by Mixed Self-Assembled Monolayers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14493-14499.	4.0	27

#	Article	IF	Citations
271	Solution-Processed Barium Salts as Charge Injection Layers for High Performance N-Channel Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9614-9621.	4.0	37
272	A Thienoisoindigo-Naphthalene Polymer with Ultrahigh Mobility of 14.4 cm ² /V·s That Substantially Exceeds Benchmark Values for Amorphous Silicon Semiconductors. Journal of the American Chemical Society, 2014, 136, 9477-9483.	6.6	553
273	Synthesis, Electronic Structure, and Charge Transport Characteristics of Naphthalenediimideâ€Based Coâ€Polymers with Different Oligothiophene Donor Units. Advanced Functional Materials, 2014, 24, 1151-1162.	7.8	65
274	Simultaneous Enhancement of Electron Injection and Air Stability in N-Type Organic Field-Effect Transistors by Water-Soluble Polyfluorene Interlayers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8108-8114.	4.0	18
275	Improving solution-processed n-type organic field-effect transistors by transfer-printed metal/semiconductor and semiconductor/semiconductor heterojunctions. Organic Electronics, 2014, 15, 1884-1889.	1.4	16
276	Fabrication and Characterization of Conjugated Polymer Nanowires with Uniformed Size. Korean Chemical Engineering Research, 2014, 52, 205-208.	0.2	0
277	Spray-printed organic field-effect transistors and complementary inverters. Journal of Materials Chemistry C, 2013, 1, 1500.	2.7	40
278	Organic Light Detectors: Photodiodes and Phototransistors. Advanced Materials, 2013, 25, 4267-4295.	11.1	1,088
279	Printed, Flexible, Organic Nanoâ€Floatingâ€Gate Memory: Effects of Metal Nanoparticles and Blocking Dielectrics on Memory Characteristics. Advanced Functional Materials, 2013, 23, 3503-3512.	7.8	200
280	Flexible Complementary Logic Gates Using Inkjet-Printed Polymer Field-Effect Transistors. IEEE Electron Device Letters, 2013, 34, 126-128.	2.2	44
281	A Newly Designed Polyfluorene as an Efficient Host Material for Phosphorescent-Dye-Doped Polymer Light-Emitting Diodes. Japanese Journal of Applied Physics, 2013, 52, 10MB11.	0.8	2
282	Effect of gate electrode conductivity on operation frequency of inkjet-printed complementary polymer ring oscillators. Thin Solid Films, 2013, 546, 141-146.	0.8	4
283	Large-scale organic nanowire lithography and electronics. Nature Communications, 2013, 4, 1773.	5 . 8	262
284	Efficient Charge Injection in p-Type Polymer Field-Effect Transistors with Low-Cost Molybdenum Electrodes through V2O5 Interlayer. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5804-5810.	4.0	33
285	Highâ€Mobility Airâ€Stable Naphthalene Diimideâ€Based Copolymer Containing Extended Ï€â€Conjugation for nâ€Channel Organic Field Effect Transistors. Advanced Functional Materials, 2013, 23, 5719-5727.	7.8	166
286	Optimal Ambipolar Charge Transport of Thienylenevinylene-Based Polymer Semiconductors by Changes in Conformation for High-Performance Organic Thin Film Transistors and Inverters. Chemistry of Materials, 2013, 25, 1572-1583.	3.2	55
287	Low-voltage, high speed inkjet-printed flexible complementary polymer electronic circuits. Organic Electronics, 2013, 14, 1407-1418.	1.4	63
288	Toward Printed Integrated Circuits based on Unipolar or Ambipolar Polymer Semiconductors. Advanced Materials, 2013, 25, 4210-4244.	11.1	473

#	Article	IF	CITATIONS
289	Inkjet-Printing-Based Soft-Etching Technique for High-Speed Polymer Ambipolar Integrated Circuits. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12579-12586.	4.0	12
290	High Performance and Stable N-Channel Organic Field-Effect Transistors by Patterned Solvent-Vapor Annealing. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10745-10752.	4.0	60
291	Conjugated Polymer Chain and Crystallite Orientation Induced by Vertically Aligned Carbon Nanotube Arrays. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9043-9050.	4.0	11
292	Simple Barâ€Coating Process for Largeâ€Area, Highâ€Performance Organic Fieldâ€Effect Transistors and Ambipolar Complementary Integrated Circuits. Advanced Materials, 2013, 25, 4302-4308.	11.1	210
293	Selected Peer-Reviewed Articles from EMRS 2012 Symposium on "Organic and Hybrid Materials for Flexible Electronics: Properties and Applications― Journal of Nanoscience and Nanotechnology, 2013, 13, 5134-5135.	0.9	1
294	Synthesis of Poly(p-phenylene-vinylene) Derivatives Containing an Oxadiazole Pendant Group and Their Applications to Organic Electronic Devices. Journal of Nanoscience and Nanotechnology, 2013, 13, 3321-3330.	0.9	4
295	Organic Electronics: Printed, Flexible, Organic Nanoâ€Floatingâ€Gate Memory: Effects of Metal Nanoparticles and Blocking Dielectrics on Memory Characteristics (Adv. Funct. Mater. 28/2013). Advanced Functional Materials, 2013, 23, 3482-3482.	7.8	4
296	Organic and Hybrid Materials for Flexible Electronics. Advanced Materials, 2013, 25, 4208-4209.	11.1	29
297	A Study on Processing of Auxiliary Electrodes for OLED Lighting Devices Using a Reverse Gravure-Offset or Gravure-Offset Printing. Journal of the Korean Society for Precision Engineering, 2013, 30, 578-583.	0.1	1
298	Mass Production of Polyfluorene Nanowires Using a Melt-Assisted Wetting Method. Journal of Nanoscience and Nanotechnology, 2012, 12, 1260-1264.	0.9	1
299	Effect of Curing Temperature on Nano-Silver Paste Ink for Organic Thin-Film Transistors. Journal of Nanoscience and Nanotechnology, 2012, 12, 3272-3275.	0.9	4
300	Organic Complementary Circuits: Remarkable Enhancement of Hole Transport in Top-Gated N-Type Polymer Field-Effect Transistors by a High-k Dielectric for Ambipolar Electronic Circuits (Adv. Mater.) Tj ETQq0 0 C) rgB.TL/Ov	erlock 10 Tf 5
301	Gold nanoparticle-doped graphene nanosheets: sub-nanosized gold clusters nucleate and grow at the nitrogen-induced defects on graphene surfaces. Journal of Materials Chemistry, 2012, 22, 7130.	6.7	26
302	Electron injection enhancement by a Cs-salt interlayer in ambipolar organic field-effect transistors and complementary circuits. Journal of Materials Chemistry, 2012, 22, 16979.	6.7	32
303	Effects of gate dielectrics and their solvents on characteristics of solution-processed N-channel polymer field-effect transistors. Journal of Materials Chemistry, 2012, 22, 21138.	6.7	46
304	Combining Electron-Neutral Building Blocks with Intramolecular "Conformational Locks―Affords Stable, High-Mobility P- and N-Channel Polymer Semiconductors. Journal of the American Chemical Society, 2012, 134, 10966-10973.	6.6	220
305	Optical and barrier properties of thin-film encapsulations for transparent OLEDs. Organic Electronics, 2012, 13, 1956-1961.	1.4	21
306	Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films. Nature, 2012, 489, 128-132.	13.7	975

#	Article	IF	CITATIONS
307	Controlled Charge Transport by Polymer Blend Dielectrics in Top-Gate Organic Field-Effect Transistors for Low-Voltage-Operating Complementary Circuits. ACS Applied Materials & Discrete Representation of the Interfaces, 2012, 4, 6176-6184.	4.0	77
308	Metal Ion-Enriched Polyelectrolyte Complexes and Their Utilization in Multilayer Assembly and Catalytic Nanocomposite Films. Langmuir, 2012, 28, 8486-8495.	1.6	23
309	A conjugated polyazine containing diketopyrrolopyrrole for ambipolar organic thin film transistors. Chemical Communications, 2012, 48, 8413.	2.2	90
310	Highly stable printed polymer field-effect transistors and inverters via polyselenophene conjugated polymers. Journal of Materials Chemistry, 2012, 22, 12774.	6.7	31
311	Highâ€Performance Topâ€Gated Organic Fieldâ€Effect Transistor Memory using Electrets for Monolithic Printed Flexible NAND Flash Memory. Advanced Functional Materials, 2012, 22, 2915-2926.	7.8	184
312	Remarkable Enhancement of Hole Transport in Topâ€Gated Nâ€Type Polymer Fieldâ€Effect Transistors by a Highâ€k Dielectric for Ambipolar Electronic Circuits. Advanced Materials, 2012, 24, 5433-5439.	11.1	176
313	Optical and thermal properties of large-area OLED lightings with metallic grids. Organic Electronics, 2012, 13, 184-194.	1.4	53
314	Downscaling of n-channel organic field-effect transistors with inkjet-printed electrodes. Organic Electronics, 2012, 13, 320-328.	1.4	21
315	Highly Soluble Poly(thienylenevinylene) Derivatives with Charge-Carrier Mobility Exceeding 1 cm2V–1s–1. Chemistry of Materials, 2011, 23, 4663-4665.	3.2	72
316	Flexible OLEDs and organic electronics. Semiconductor Science and Technology, 2011, 26, 030301.	1.0	30
317	Bithiophene-Imide-Based Polymeric Semiconductors for Field-Effect Transistors: Synthesis, Structureâ^'Property Correlations, Charge Carrier Polarity, and Device Stability. Journal of the American Chemical Society, 2011, 133, 1405-1418.	6.6	231
318	Charge Injection Engineering of Ambipolar Field-Effect Transistors for High-Performance Organic Complementary Circuits. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3205-3214.	4.0	150
319	Polymer and Organic Nonvolatile Memory Devices. Chemistry of Materials, 2011, 23, 341-358.	3.2	506
320	Production of graphene by exfoliation of graphite in a volatile organic solvent. Nanotechnology, 2011, 22, 365601.	1.3	61
321	Controlling contact resistance in top-gate polythiophene-based field-effect transistors by molecular engineering. Semiconductor Science and Technology, 2011, 26, 034003.	1.0	19
322	Polymer Dielectrics and Orthogonal Solvent Effects for High-Performance Inkjet-Printed Top-Gated P-Channel Polymer Field-Effect Transistors. ETRI Journal, 2011, 33, 887-896.	1.2	29
323	Low-voltage-operated top-gate polymer thin-film transistors with high-capacitance P(VDF-TrFE)/PVDF-blended dielectrics. Current Applied Physics, 2011, 11, S213-S218.	1.1	32
324	High speeds complementary integrated circuits fabricated with allâ€printed polymeric semiconductors. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 62-67.	2.4	102

#	Article	IF	CITATIONS
325	Improved performance uniformity of inkjet printed n-channel organic field-effect transistors and complementary inverters. Organic Electronics, 2011, 12, 634-640.	1.4	65
326	Frequency operation of low-voltage, solution-processed organic field-effect transistors. Semiconductor Science and Technology, 2011, 26, 034006.	1.0	29
327	Top-gate ferroelectric thin-film-transistors with P(VDF-TrFE) copolymer. Current Applied Physics, 2010, 10, e58-e61.	1.1	30
328	Controllable Shifts in Threshold Voltage of Topâ€Gate Polymer Fieldâ€Effect Transistors for Applications in Organic Nano Floating Gate Memory. Advanced Functional Materials, 2010, 20, 224-230.	7.8	258
329	High mobility top-gated poly(3-hexylthiophene) field-effect transistors with high work-function Pt electrodes. Thin Solid Films, 2010, 518, 4024-4029.	0.8	51
330	Low-voltage-operated top-gate polymer thin-film transistors with high capacitance poly(vinylidene) Tj $ETQq0\ 0\ 0$ 108, .	rgBT /Ove 1.1	rlock 10 Tf 50 30
331	Air Stable Cross-Linked Cytop Ultrathin Gate Dielectric for High Yield Low-Voltage Top-Gate Organic Field-Effect Transistors. Chemistry of Materials, 2010, 22, 1559-1566.	3.2	133
332	Organic Nano-Floating-Gate Memory with Polymer: [6,6]-Phenyl-C61Butyric Acid Methyl Ester Composite Films. Japanese Journal of Applied Physics, 2010, 49, 05EB01.	0.8	39
333	? Electric Characteristics of an Organic Schottky Diode according to Variation of P3HT Thickness. Journal of the Korean Physical Society, 2010, 57, 124-127.	0.3	6
334	Characteristics of Via-Hole Interconnections Fabricated by Using an Inkjet Printing Method. Journal of the Korean Physical Society, 2010, 57, 1699-1701.	0.3	6
335	Controlling Electron and Hole Charge Injection in Ambipolar Organic Fieldâ€Effect Transistors by Selfâ€Assembled Monolayers. Advanced Functional Materials, 2009, 19, 2407-2415.	7.8	209
336	A New Poly(thienylenevinylene) Derivative with High Mobility and Oxidative Stability for Organic Thinâ€Film Transistors and Solar Cells. Advanced Materials, 2009, 21, 2808-2814.	11.1	118
337	Polaron Localization at Interfaces in Highâ€Mobility Microcrystalline Conjugated Polymers. Advanced Materials, 2009, 21, 3759-3763.	11.1	105
338	Charge transfer and trapping properties in polymer gate dielectrics for non-volatile organic field-effect transistor memory applications. Solid-State Electronics, 2009, 53, 1165-1168.	0.8	22
339	Ultra-thin polymer gate dielectrics for top-gate polymer field-effect transistors. Organic Electronics, 2009, 10, 174-180.	1.4	123
340	Templated assembly of metal nanoparticles in nanoimprinted patterns for metal nanowire fabrication. Nanotechnology, 2009, 20, 355302.	1.3	21
341	Polarity Effects of Polymer Gate Electrets on Nonâ€Volatile Organic Fieldâ€Effect Transistor Memory. Advanced Functional Materials, 2008, 18, 3678-3685.	7.8	256
342	Downscaling of Organic Fieldâ€Effect Transistors with a Polyelectrolyte Gate Insulator. Advanced Materials, 2008, 20, 4708-4713.	11.1	138

#	Article	IF	Citations
343	Highly polarized light emission from uniaxially aligned thin films of biphenyl/thienothiophene co-oligomer. Thin Solid Films, 2008, 516, 7505-7510.	0.8	6
344	Effect of photo- and thermo-oxidative degradation on the performance of hybrid photovoltaic cells with a fluorene-based copolymer and nanocrystalline TiO ₂ . Journal of Materials Chemistry, 2008, 18, 654-659.	6.7	24
345	Effect of rubbed polyimide layer on the field-effect mobility in pentacene thin-film transistors. Applied Physics Letters, 2008, 92, 052107.	1.5	47
346	Ink-jet printed ZnO nanowire field effect transistors. Applied Physics Letters, 2007, 91, 043109.	1.5	68
347	Surface plasmon enhanced photoluminescence of conjugated polymers. Applied Physics Letters, 2007, 90, 161107.	1.5	70
348	Synthesis and Studies on 2-Hexylthieno[3,2-b]thiophene End-Capped Oligomers for OTFTs. Chemistry of Materials, 2007, 19, 3561-3567.	3.2	91
349	Organic phototransistor based on pentacene as an efficient red light sensor. Solid-State Electronics, 2007, 51, 1052-1055.	0.8	64
350	Downscaling of self-aligned, all-printed polymer thin-film transistors. Nature Nanotechnology, 2007, 2, 784-789.	15.6	515
351	Effect of light irradiation on the characteristics of organic field-effect transistors. Journal of Applied Physics, 2006, 100, 094501.	1.1	65
352	Self-aligned printing of high-performance polymer thin-film transistors. , 2006, , .		0
353	Synthesis of a New Cross-Linkable Perfluorocyclobutane-Based Hole-Transport Material. Organic Letters, 2006, 8, 4703-4706.	2.4	73
354	Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells. Electrochimica Acta, 2006, 51, 3814-3819.	2.6	189
355	Organic Non-Volatile Memory Based on Pentacene Field-Effect Transistors Using a Polymeric Gate Electret. Advanced Materials, 2006, 18, 3179-3183.	11.1	294
356	Perfluorocyclobutane containing polymeric gate dielectric for organic thin film transistors with high on/off ratio. Applied Physics Letters, 2006, 89, 202516.	1.5	18
357	Prefluorescent-Dye-Induced, Chemically Reversible Fluorescent Imaging Based on a Polymeric Photobase Generator. Advanced Materials, 2005, 17, 833-837.	11.1	19
358	Organic thin film phototransistors: materials and mechanism. , 2005, , .		1
359	Highly sensitive thin-film organic phototransistors: Effect of wavelength of light source on device performance. Journal of Applied Physics, 2005, 98, 074505.	1.1	184
360	Keto defect sites in fluorene-based organic field-effect transistors: The origin of rapid degradation on the performance of the device. Journal of Applied Physics, 2005, 97, 104504.	1.1	25

#	Article	IF	CITATIONS
361	High-photosensitivity p-channel organic phototransistors based on a biphenyl end-capped fused bithiophene oligomer. Applied Physics Letters, 2005, 86, 043501.	1.5	153
362	Organic Field Effect Transistors Based on Biphenyl, Fluorene End-Capped Fused Bithiophene Oligomers. Chemistry of Materials, 2005, 17, 3861-3870.	3.2	51
363	Effect of keto defects on the electrical properties of fluorene-based oligomers. Applied Physics Letters, 2004, 85, 2953-2955.	1.5	14
364	Effect of Molecular Orientation of Epitaxially Grown Platinum(II) Octaethyl Porphyrin Films on the Performance of Field-Effect Transistors. Advanced Materials, 2003, 15, 699-702.	11.1	128
365	Optical and electroluminescent properties of a new green emitting Ir(III) complex. Optical Materials, 2003, 21, 143-146.	1.7	22
366	Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes. Journal of Chemical Physics, 2003, 118, 2853.	1.2	218
367	Organic field-effect transistors by a wet-transferring method. Applied Physics Letters, 2003, 83, 1243-1245.	1.5	38
368	Charge carrier mobility and photorefractive grating buildup in bipolar organic glasses. Applied Physics Letters, 2002, 81, 190-192.	1.5	5
369	Polymer phosphorescence device using a new green emitting Ir(III) Complex. Journal of Information Display, 2002, 3, 6-10.	2.1	0
370	Electrophosphorescent Light Emitting Devices Using Mixed Ligand Ir(III) Complexes. Materials Research Society Symposia Proceedings, 2001, 708, 3381.	0.1	1
371	Singlet and Triplet Energy Transfer in Phosphorescent Dye Doped Polymer Light Emitting Devices. Materials Research Society Symposia Proceedings, 2001, 708, 3401.	0.1	2
372	Efficient Perovskite Nanocrystalâ€based Optoelectronic Devices. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100366.	0.8	4
373	Development of high performance halide perovskite transistors. , 0, , .		0