Daniel Rosel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1063321/publications.pdf

Version: 2024-02-01

279798 214800 2,459 62 23 47 citations h-index g-index papers 64 64 64 3958 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Exosomes produced by melanoma cells significantly influence the biological properties of normal and cancer-associated fibroblasts. Histochemistry and Cell Biology, 2022, 157, 153-172.	1.7	17
2	Src kinase: Key effector in mechanosignalling. International Journal of Biochemistry and Cell Biology, 2021, 131, 105908.	2.8	13
3	RNA-seq Characterization of Melanoma Phenotype Switch in 3D Collagen after p38 MAPK Inhibitor Treatment. Biomolecules, 2021, 11, 449.	4.0	2
4	Targeting Mitochondrial Iron Metabolism Suppresses Tumor Growth and Metastasis by Inducing Mitochondrial Dysfunction and Mitophagy. Cancer Research, 2021, 81, 2289-2303.	0.9	51
5	TLR4-Mediated Recognition of Mouse Polyomavirus Promotes Cancer-Associated Fibroblast-Like Phenotype and Cell Invasiveness. Cancers, 2021, 13, 2076.	3.7	3
6	Thermo- and ROS-Responsive Self-Assembled Polymer Nanoparticle Tracers for ¹⁹ F MRI Theranostics. Biomacromolecules, 2021, 22, 2325-2337.	5.4	24
7	Estrogen Receptor Modulators in Viral Infections Such as SARSâ^'CoVâ^'2: Therapeutic Consequences. International Journal of Molecular Sciences, 2021, 22, 6551.	4.1	14
8	A homozygous stop-gain variant in ARHGAP42 is associated with childhood interstitial lung disease, systemic hypertension, and immunological findings. PLoS Genetics, 2021, 17, e1009639.	3.5	4
9	Invadopodia Structure in 3D Environment Resolved by Near-Infrared Branding Protocol Combining Correlative Confocal and FIB-SEM Microscopy. International Journal of Molecular Sciences, 2021, 22, 7805.	4.1	5
10	The Analysis of Inflammation-Related Proteins in a Cargo of Exosomes Derived from the Serum of Uveal Melanoma Patients Reveals Potential Biomarkers of Disease Progression. Cancers, 2021, 13, 3334.	3.7	16
11	Are We Ready for Migrastatics?. Cells, 2021, 10, 1845.	4.1	10
12	Urea-functionalized organoselenium compounds as promising anti-HepG2 and apoptosis-inducing agents. Future Medicinal Chemistry, 2021, 13, 1655-1677.	2.3	19
13	Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. International Journal of Molecular Sciences, 2020, 21, 7937.	4.1	45
14	A Screen for PKN3 Substrates Reveals an Activating Phosphorylation of ARHGAP18. International Journal of Molecular Sciences, 2020, 21, 7769.	4.1	4
15	Sustained Inflammatory Signalling through Stat1/Stat2/IRF9 Is Associated with Amoeboid Phenotype of Melanoma Cells. Cancers, 2020, 12, 2450.	3.7	3
16	Raloxifene and Bazedoxifene Could Be Promising Candidates for Preventing the COVID-19 Related Cytokine Storm, ARDS and Mortality. In Vivo, 2020, 34, 3027-3028.	1.3	33
17	Increased Level of Long Non-Coding RNA MALAT1 Is a Common Feature of Amoeboid Invasion. Cancers, 2020, 12, 1136.	3.7	4
18	High-throughput transcriptomic and proteomic profiling of mesenchymal-amoeboid transition in 3D collagen. Scientific Data, 2020, 7, 160.	5.3	15

#	Article	IF	Citations
19	Vimentin Intermediate Filaments as Potential Target for Cancer Treatment. Cancers, 2020, 12, 184.	3.7	150
20	Migrastatics – Anti-metastatic Drugs Targeting Cancer Cell Invasion. Human Perspectives in Health Sciences and Technology, 2020, , 203-211.	0.4	4
21	Microtubule-targeting agents and their impact on cancer treatment. European Journal of Cell Biology, 2020, 99, 151075.	3.6	132
22	Solid cancer: the new tumour spread endpoint opens novel opportunities. British Journal of Cancer, 2019, 121, 513-514.	6.4	10
23	6-Substituted purines as ROCK inhibitors with anti-metastatic activity. Bioorganic Chemistry, 2019, 90, 103005.	4.1	7
24	Migrastatics: Redirecting R&D in Solid Cancer Towards Metastasis?. Trends in Cancer, 2019, 5, 755-756.	7.4	25
25	Integrated actions of mTOR complexes 1 and 2 for growth and development of Dictyostelium. International Journal of Developmental Biology, 2019, 63, 521-527.	0.6	11
26	Novel FRET-Based Src Biosensor Reveals Mechanisms of Src Activation and Its Dynamics in Focal Adhesions. Cell Chemical Biology, 2019, 26, 255-268.e4.	5.2	14
27	The interaction of p130Cas with <scp>PKN</scp> 3 promotes malignant growth. Molecular Oncology, 2019, 13, 264-289.	4.6	16
28	Fibroblasts potentiate melanoma cells in vitro invasiveness induced by UV-irradiated keratinocytes. Histochemistry and Cell Biology, 2018, 149, 503-516.	1.7	27
29	Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion. Scientific Reports, 2018, 8, 12020.	3.3	43
30	RNA-seq of macrophages of amoeboid or mesenchymal migratory phenotype due to specific structure of environment. Scientific Data, 2018, 5, 180198.	5.3	13
31	The role of focal adhesion anchoring domains of CAS in mechanotransduction. Scientific Reports, 2017, 7, 46233.	3.3	23
32	Migrastaticsâ€"Anti-metastatic and Anti-invasion Drugs: Promises and Challenges. Trends in Cancer, 2017, 3, 391-406.	7.4	262
33	ARHGAP42 is activated by Src–mediated tyrosine phosphorylation to promote cell motility. Journal of Cell Science, 2017, 130, 2382-2393.	2.0	15
34	Limits to Precision Cancer Medicine. New England Journal of Medicine, 2017, 376, 95-97.	27.0	19
35	Structural characterization of CAS SH3 domain selectivity and regulation reveals new CAS interaction partners. Scientific Reports, 2017, 7, 8057.	3.3	14
36	Pragmatic medicine in solid cancer: a translational alternative to precision medicine. OncoTargets and Therapy, 2016, 9, 1839.	2.0	6

#	Article	IF	Citations
37	Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochemistry and Cell Biology, 2016, 146, 205-217.	1.7	74
38	Cell polarity signaling in the plasticity of cancer cell invasiveness. Oncotarget, 2016, 7, 25022-25049.	1.8	101
39	PKC $\hat{l}\pm$ promotes the mesenchymal to amoeboid transition and increases cancer cell invasiveness. BMC Cancer, 2015, 15, 326.	2.6	13
40	Translation in solid cancer: are sizeâ€based response criteria an anachronism?. Clinical and Translational Oncology, 2015, 17, 1-10.	2.4	12
41	Mechanosensors in integrin signaling: The emerging role of p130Cas. European Journal of Cell Biology, 2014, 93, 445-454.	3.6	105
42	CAS directly interacts with vinculin to control mechanosensing and focal adhesion dynamics. Cellular and Molecular Life Sciences, 2014, 71, 727-744.	5.4	55
43	Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biology Direct, 2013, 8, 8.	4.6	34
44	Metastasis of aggressive amoeboid sarcoma cells is dependent on Rho/ROCK/MLC signaling. Cell Communication and Signaling, 2013, 11, 51.	6.5	32
45	Drugs for solid cancer the productivity crisis prompts a rethink. OncoTargets and Therapy, 2013, 6, 767.	2.0	9
46	TOR complex 2 (TORC2) in <i>Dictyostelium</i> suppresses phagocytic nutrient capture independently of TORC1-mediated nutrient sensing. Journal of Cell Science, 2012, 125, 37-48.	2.0	41
47	Proteins implicated in the increase of adhesivity induced by suberoylanilide hydroxamic acid in leukemic cells. Journal of Proteomics, 2012, 77, 406-422.	2.4	9
48	NG2-mediated Rho activation promotes amoeboid invasiveness of cancer cells. European Journal of Cell Biology, 2012, 91, 969-977.	3.6	14
49	SH3 Domain Tyrosine Phosphorylation – Sites, Role and Evolution. PLoS ONE, 2012, 7, e36310.	2.5	30
50	TOR complex 2 (TORC2) in Dictyostelium suppresses phagocytic nutrient capture independently of TORC1-mediated nutrient sensing. Development (Cambridge), 2012, 139, e507-e507.	2.5	0
51	Tyrosine phosphorylation within the SH3 domain regulates CAS subcellular localization, cell migration, and invasiveness. Molecular Biology of the Cell, 2011, 22, 4256-4267.	2.1	40
52	ROCK Inhibitors as Emerging Therapeutic Candidates for Sarcomas. Current Cancer Drug Targets, 2010, 10, 127-134.	1.6	21
53	The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cellular and Molecular Life Sciences, 2010, 67, 63-71.	5.4	262
54	The structure of invadopodia in a complex 3D environment. European Journal of Cell Biology, 2010, 89, 674-680.	3.6	71

#	ARTICLE	IF	CITATION
55	The role of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Communication and Signaling, 2010, 8, 22.	6.5	154
56	Neoplastic progression of the human breast cancer cell line G3S1 is associated with elevation of cytoskeletal dynamics and upregulation of MT1-MMP. International Journal of Oncology, 2010, 36, 833-9.	3.3	10
57	Confocal microscopy reveals <i>Myzitiras</i> and <i>Vthela</i> morphotypes as new signatures of malignancy progression. Scanning, 2009, 31, 102-106.	1.5	1
58	Contractile forces in tumor cell migration. European Journal of Cell Biology, 2008, 87, 669-676.	3.6	154
59	Up-Regulation of Rho/ROCK Signaling in Sarcoma Cells Drives Invasion and Increased Generation of Protrusive Forces. Molecular Cancer Research, 2008, 6, 1410-1420.	3.4	96
60	The COP9 signalosome regulates cell proliferation of Dictyostelium discoideum. European Journal of Cell Biology, 2006, 85, 1023-1034.	3.6	32
61	Molecular characterization of a calmodulin-like Dictyostelium protein CalB. FEBS Letters, 2000, 473, 323-327.	2.8	16
62	Novel FRET-Based Src Biosensor Reveals Mechanisms of Src Activation and Its Dynamics in Focal Adhesions. SSRN Electronic Journal, 0, , .	0.4	0