Jerry Silver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1063/publications.pdf Version: 2024-02-01

IEDDV SILVED

#	Article	IF	CITATIONS
1	New insights into glial scar formation after spinal cord injury. Cell and Tissue Research, 2022, 387, 319-336.	1.5	70
2	An adult-stage transcriptional program for survival of serotonergic connectivity. Cell Reports, 2022, 39, 110711.	2.9	8
3	Histomorphometry in Peripheral Nerve Regeneration: Comparison of Different Axon Counting Methods. Journal of Surgical Research, 2021, 268, 354-362.	0.8	3
4	A <scp>metaâ€enalysis</scp> of functional outcomes in rat sciatic nerve injury models. Microsurgery, 2021, 41, 286-295.	0.6	16
5	Cathepsins in neuronal plasticity. Neural Regeneration Research, 2021, 16, 26.	1.6	18
6	Regulation of autophagy by inhibitory CSPG interactions with receptor PTPσ and its impact on plasticity and regeneration after spinal cord injury. Experimental Neurology, 2020, 328, 113276.	2.0	32
7	Intravital imaging of immune cells and their interactions with other cell types in the spinal cord: Experiments with multicolored moving cells. Experimental Neurology, 2019, 320, 112972.	2.0	3
8	Novel ¹⁸ F-Labeled Radioligands for Positron Emission Tomography Imaging of Myelination in the Central Nervous System. Journal of Medicinal Chemistry, 2019, 62, 4902-4914.	2.9	13
9	LAR and PTPÏ f receptors are negative regulators of oligodendrogenesis and oligodendrocyte integrity in spinal cord injury. Glia, 2019, 67, 125-145.	2.5	44
10	Lmx1b is required at multiple stages to build expansive serotonergic axon architectures. ELife, 2019, 8, .	2.8	32
11	Rapid and robust restoration of breathing long after spinal cord injury. Nature Communications, 2018, 9, 4843.	5.8	58
12	Modulation of proteoglycan receptor PTPÏ f enhances MMP-2 activity to promote recovery from multiple sclerosis. Nature Communications, 2018, 9, 4126.	5.8	49
13	Modulation of Receptor Protein Tyrosine Phosphatase Sigma Increases Chondroitin Sulfate Proteoglycan Degradation through Cathepsin B Secretion to Enhance Axon Outgrowth. Journal of Neuroscience, 2018, 38, 5399-5414.	1.7	47
14	Targeting the cytoskeleton with an FDA approved drug to promote recovery after spinal cord injury. Experimental Neurology, 2018, 306, 260-262.	2.0	1
15	The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiological Reviews, 2018, 98, 881-917.	13.1	540
16	Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury. Journal of Neuroinflammation, 2018, 15, 90.	3.1	73
17	Perspectives on "the biology of spinal cord regeneration success and failure― Neural Regeneration Research, 2018, 13, 1358.	1.6	3
18	Discovery of 1,2,3-Triazole Derivatives for Multimodality PET/CT/Cryoimaging of Myelination in the Central Nervous System. Journal of Medicinal Chemistry, 2017, 60, 987-999.	2.9	16

#	Article	IF	CITATIONS
19	A Latent Propriospinal Network Can Restore Diaphragm Function after High Cervical Spinal Cord Injury. Cell Reports, 2017, 21, 654-665.	2.9	37
20	Combinatory repair strategy to promote axon regeneration and functional recovery after chronic spinal cord injury. Scientific Reports, 2017, 7, 9018.	1.6	45
21	Phasic inhibition as a mechanism for generation of rapid respiratory rhythms. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12815-12820.	3.3	38
22	"Targeting astrocytes in CNS injury and disease: A translational research approach― Progress in Neurobiology, 2016, 144, 173-187.	2.8	130
23	Disrupting protein tyrosine phosphatase Ï f does not prevent sympathetic axonal dieback following myocardial infarction. Experimental Neurology, 2016, 276, 1-4.	2.0	1
24	The glial scar is more than just astrocytes. Experimental Neurology, 2016, 286, 147-149.	2.0	79
25	Neurite Outgrowth Assay. Bio-protocol, 2016, 6, .	0.2	9
26	Enhanced regeneration and functional recovery after spinal root avulsion by manipulation of the proteoglycan receptor PTPIf. Scientific Reports, 2015, 5, 14923.	1.6	35
27	Intravenous multipotent adult progenitor cell treatment decreases inflammation leading to functional recovery following spinal cord injury. Scientific Reports, 2015, 5, 16795.	1.6	63
28	NG2+ Progenitors Derived From Embryonic Stem Cells Penetrate Glial Scar and Promote Axonal Outgrowth Into White Matter After Spinal Cord Injury. Stem Cells Translational Medicine, 2015, 4, 401-411.	1.6	37
29	Large animal and primate models of spinal cord injury for the testing of novel therapies. Experimental Neurology, 2015, 269, 154-168.	2.0	75
30	Systemically treating spinal cord injury. Science, 2015, 348, 285-286.	6.0	22
31	Central Nervous System Regenerative Failure: Role of Oligodendrocytes, Astrocytes, and Microglia. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020602.	2.3	258
32	Modulation of the proteoglycan receptor PTPÏ f promotes recovery after spinal cord injury. Nature, 2015, 518, 404-408.	13.7	385
33	Peripheral Nerve Transplantation Combined with Acidic Fibroblast Growth Factor and Chondroitinase Induces Regeneration and Improves Urinary Function in Complete Spinal Cord Transected Adult Mice. PLoS ONE, 2015, 10, e0139335.	1.1	41
34	Entrapment via Synaptic-Like Connections between NG2 Proteoglycan+ Cells and Dystrophic Axons in the Lesion Plays a Role in Regeneration Failure after Spinal Cord Injury. Journal of Neuroscience, 2014, 34, 16369-16384.	1.7	116
35	Functional regeneration beyond the glial scar. Experimental Neurology, 2014, 253, 197-207.	2.0	532
36	High-resolution intravital imaging reveals that blood-derived macrophages but not resident microglia facilitate secondary axonal dieback in traumatic spinal cord injury. Experimental Neurology, 2014, 254, 109-120.	2.0	170

#	Article	IF	CITATIONS
37	Contributions of chondroitin sulfate proteoglycans to neurodevelopment, injury, and cancer. Current Opinion in Neurobiology, 2014, 27, 171-178.	2.0	71
38	Chondroitin Sulfate Proteoglycans Potently Inhibit Invasion and Serve as a Central Organizer of the Brain Tumor Microenvironment. Journal of Neuroscience, 2013, 33, 15603-15617.	1.7	112
39	Demonstrating efficacy in preclinical studies of cellular therapies for spinal cord injury — How much is enough?. Experimental Neurology, 2013, 248, 30-44.	2.0	52
40	Nerve Regeneration Restores Supraspinal Control of Bladder Function after Complete Spinal Cord Injury. Journal of Neuroscience, 2013, 33, 10591-10606.	1.7	97
41	Extravascular CX3CR1 ⁺ Cells Extend Intravascular Dendritic Processes into Intact Central Nervous System Vessel Lumen. Microscopy and Microanalysis, 2013, 19, 778-790.	0.2	32
42	Fibronectin Inhibits Chronic Pain Development after Spinal Cord Injury. Journal of Neurotrauma, 2012, 29, 589-599.	1.7	32
43	Oncomodulin affords limited regeneration to injured sensory axons in vitro and in vivo. Experimental Neurology, 2012, 233, 708-716.	2.0	15
44	Treatments to restore respiratory function after spinal cord injury and their implications for regeneration, plasticity and adaptation. Experimental Neurology, 2012, 235, 18-25.	2.0	28
45	The effect of long-term release of Shh from implanted biodegradable microspheres on recovery from spinal cord injury in mice. Biomaterials, 2012, 33, 2892-2901.	5.7	37
46	Leukocyte Common Antigen-Related Phosphatase Is a Functional Receptor for Chondroitin Sulfate Proteoglycan Axon Growth Inhibitors. Journal of Neuroscience, 2011, 31, 14051-14066.	1.7	268
47	Functional regeneration of respiratory pathways after spinal cord injury. Nature, 2011, 475, 196-200.	13.7	344
48	The Unusual Response of Serotonergic Neurons after CNS Injury: Lack of Axonal Dieback and Enhanced Sprouting within the Inhibitory Environment of the Glial Scar. Journal of Neuroscience, 2011, 31, 5605-5616.	1.7	98
49	Multipotent Adult Progenitor Cells Prevent Macrophage-Mediated Axonal Dieback and Promote Regrowth after Spinal Cord Injury. Journal of Neuroscience, 2011, 31, 944-953.	1.7	132
50	Immature astrocytes promote CNS axonal regeneration when combined with chondroitinase ABC. Developmental Neurobiology, 2010, 70, 826-841.	1.5	78
51	Adult NG2+ Cells Are Permissive to Neurite Outgrowth and Stabilize Sensory Axons during Macrophage-Induced Axonal Dieback after Spinal Cord Injury. Journal of Neuroscience, 2010, 30, 255-265.	1.7	169
52	Serotonergic Neurons Migrate Radially through the Neuroepithelium by Dynamin-Mediated Somal Translocation. Journal of Neuroscience, 2010, 30, 420-430.	1.7	46
53	Much Ado about Nogo. Neuron, 2010, 66, 619-621.	3.8	8
54	Shedding light on restoring respiratory function after spinal cord injury. Frontiers in Molecular Neuroscience, 2009, 2, 18.	1.4	15

#	Article	IF	CITATIONS
55	PTPσ Is a Receptor for Chondroitin Sulfate Proteoglycan, an Inhibitor of Neural Regeneration. Science, 2009, 326, 592-596.	6.0	586
56	Overcoming Macrophage-Mediated Axonal Dieback Following CNS Injury. Journal of Neuroscience, 2009, 29, 9967-9976.	1.7	196
57	CNS Regeneration: Only on One Condition. Current Biology, 2009, 19, R444-R446.	1.8	13
58	Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Experimental Neurology, 2008, 209, 426-445.	2.0	160
59	CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Experimental Neurology, 2008, 209, 294-301.	2.0	880
60	Multipotent embryonic spinal cord stem cells expanded by endothelial factors and Shh/RA promote functional recovery after spinal cord injury. Experimental Neurology, 2008, 209, 510-522.	2.0	42
61	Electrical stimulation of intact peripheral sensory axons in rats promotes outgrowth of their central projections. Experimental Neurology, 2008, 210, 238-247.	2.0	136
62	Another Barrier to Regeneration in the CNS: Activated Macrophages Induce Extensive Retraction of Dystrophic Axons through Direct Physical Interactions. Journal of Neuroscience, 2008, 28, 9330-9341.	1.7	304
63	Light-Induced Rescue of Breathing after Spinal Cord Injury. Journal of Neuroscience, 2008, 28, 11862-11870.	1.7	163
64	Contributions of the Bunge Laboratory. Journal of Spinal Cord Medicine, 2008, 31, 270-271.	0.7	1
65	GLIAL CELLS, INFLAMMATION, AND CNS TRAUMA. , 2008, , 59-94.		3
66	The role of extracellular matrix in CNS regeneration. Current Opinion in Neurobiology, 2007, 17, 120-127.	2.0	432
67	Combining an Autologous Peripheral Nervous System "Bridge" and Matrix Modification by Chondroitinase Allows Robust, Functional Regeneration beyond a Hemisection Lesion of the Adult Rat Spinal Cord. Journal of Neuroscience, 2006, 26, 7405-7415.	1.7	284
68	Chondroitinase ABC Digestion of the Perineuronal Net Promotes Functional Collateral Sprouting in the Cuneate Nucleus after Cervical Spinal Cord Injury. Journal of Neuroscience, 2006, 26, 4406-4414.	1.7	276
69	Prelesion but Not Postlesion Inflammation Plus Proteoglycan Degradation Results in Functional Regeneration. Neurosurgery, 2005, 57, 405-405.	0.6	5
70	Chronic Enhancement of the Intrinsic Growth Capacity of Sensory Neurons Combined with the Degradation of Inhibitory Proteoglycans Allows Functional Regeneration of Sensory Axons through the Dorsal Root Entry Zone in the Mammalian Spinal Cord. Journal of Neuroscience, 2005, 25, 8066-8076.	1.7	189
71	The role of proteoglycans in Schwann cell/astrocyte interactions and in regeneration failure at PNS/CNS interfaces. Molecular and Cellular Neurosciences, 2005, 28, 18-29.	1.0	94
72	Studies on the Development and Behavior of the Dystrophic Growth Cone, the Hallmark of Regeneration Failure, in an In Vitro Model of the Glial Scar and after Spinal Cord Injury. Journal of Neuroscience, 2004, 24, 6531-6539.	1.7	255

#	Article	IF	CITATIONS
73	Astrocyte-Associated Fibronectin Is Critical for Axonal Regeneration in Adult White Matter. Journal of Neuroscience, 2004, 24, 9282-9290.	1.7	168
74	A Novel DNA Enzyme Reduces Glycosaminoglycan Chains in the Glial Scar and Allows Microtransplanted Dorsal Root Ganglia Axons to Regenerate beyond Lesions in the Spinal Cord. Journal of Neuroscience, 2004, 24, 1393-1397.	1.7	174
75	Keratan Sulfate Proteoglycan Phosphacan Regulates Mossy Fiber Outgrowth and Regeneration. Journal of Neuroscience, 2004, 24, 462-473.	1.7	30
76	Regeneration beyond the glial scar. Nature Reviews Neuroscience, 2004, 5, 146-156.	4.9	2,685
77	Precursors of neurons, neuroglia, and ependymal cells in the CNS: What are they? Where are they from? How do they get where they are going?. Glia, 2003, 43, 6-18.	2.5	103
78	Pet-1 ETS Gene Plays a Critical Role in 5-HT Neuron Development and Is Required for Normal Anxiety-like and Aggressive Behavior. Neuron, 2003, 37, 233-247.	3.8	428
79	Chapter 23 The extracellular matrix in axon regeneration. Progress in Brain Research, 2002, 137, 333-349.	0.9	136
80	The Critical Role of Basement Membrane-Independent Laminin γ1 Chain during Axon Regeneration in the CNS. Journal of Neuroscience, 2002, 22, 3144-3160.	1.7	96
81	Adult Sensory Neurons Regenerate Axons Through Adult CNS White Matter: Implications for Functional Restoration After SCI. Topics in Spinal Cord Injury Rehabilitation, 2000, 6, 27-41.	0.8	0
82	Robust Regeneration of Adult Sensory Axons in Degenerating White Matter of the Adult Rat Spinal Cord. Journal of Neuroscience, 1999, 19, 5810-5822.	1.7	563
83	Beyond the Clial Scar. , 1999, , 55-II.		39
84	Does CNS Myelin Inhibit Axon Regeneration?. Neuroscientist, 1999, 5, 12-18.	2.6	6
85	Glial fibrillary acidic protein is necessary for mature astrocytes to react to ?-amyloid. , 1999, 25, 390-403.		58
86	Cellular and Molecular Mechanisms of Glial Scarring and Progressive Cavitation: <i>In Vivo</i> and <i>In Vitro</i> Analysis of Inflammation-Induced Secondary Injury after CNS Trauma. Journal of Neuroscience, 1999, 19, 8182-8198.	1.7	518
87	Adult axon regeneration in adult CNS white matter. Trends in Neurosciences, 1998, 21, 515.	4.2	25
88	Astrocytes Regulate Microglial Phagocytosis of Senile Plaque Cores of Alzheimer's Disease. Experimental Neurology, 1998, 149, 329-340.	2.0	221
89	Complement Depletion Reduces Macrophage Infiltration and Activation during Wallerian Degeneration and Axonal Regeneration. Journal of Neuroscience, 1998, 18, 6713-6722.	1.7	126
90	A Role for Tectal Midline Glia in the Unilateral Containment of Retinocollicular Axons. Journal of Neuroscience, 1998, 18, 8344-8355.	1.7	22

#	Article	IF	CITATIONS
91	Activated Macrophages and the Blood–Brain Barrier: Inflammation after CNS Injury Leads to Increases in Putative Inhibitory Molecules. Experimental Neurology, 1997, 148, 587-603.	2.0	241
92	Regeneration of adult axons in white matter tracts of the central nervous system. Nature, 1997, 390, 680-683.	13.7	752
93	Glial cell extracellular matrix: boundaries for axon growth in development and regeneration. Cell and Tissue Research, 1997, 290, 379-384.	1.5	220
94	Fibroblast Growth Factor Receptor Function Is Required for the Orderly Projection of Ganglion Cell Axons in the Developing Mammalian Retina. Molecular and Cellular Neurosciences, 1996, 8, 120-128.	1.0	77
95	A POTENT INHIBITOR OF NEURITE OUTGROWTH THAT PREDOMINATES IN THE EXTRACELLULAR MATRIX OF REACTIVE ASTROCYTES. International Journal of Developmental Neuroscience, 1996, 14, 153-175.	0.7	106
96	Regenerative Failure: A Potential Mechanism for Neuritic Dystrophy in Alzheimer's Disease. Experimental Neurology, 1996, 142, 103-110.	2.0	36
97	Reduction of Extraneural Scarring by ADCON-T/N after Surgical Intervention. Neurosurgery, 1996, 38, 976-984.	0.6	107
98	Chapter 11 Proteoglycans and other repulsive molecules in glial boundaries during development and regeneration of the nervous system. Progress in Brain Research, 1996, 108, 149-163.	0.9	90
99	Cell and molecular analysis of the developing and adult mouse subventricular zone of the cerebral hemispheres. Journal of Comparative Neurology, 1995, 361, 249-266.	0.9	244
100	Injury-Induced Proteoglycans Inhibit the Potential for Laminin-Mediated Axon Growth on Astrocytic Scars. Experimental Neurology, 1995, 136, 32-43.	2.0	428
101	Unique Changes of Ganglion Cell Growth Cone Behavior Following Cell Adhesion Molecule Perturbations: A Time-Lapse Study of the Living Retina. Molecular and Cellular Neurosciences, 1995, 6, 433-449.	1.0	97
102	Multiple Factors Govern Intraretinal Axon Guidance: A Time-Lapse Study. Molecular and Cellular Neurosciences, 1995, 6, 413-432.	1.0	94
103	Glial Cell Extracellular Matrix in Alzheimer's Disease. , 1995, , 158-170.		0
104	Inhibitory molecules in development and regeneration. Journal of Neurology, 1994, 242, S22-S24.	1.8	88
105	Regional Differences in Reactive Gliosis Induced by Substrate-Bound β-Amyloid. Experimental Neurology, 1994, 130, 56-66.	2.0	59
106	Cortical development and topographic maps: patterns of cell dispersion in developing cerebral cortex. Current Opinion in Neurobiology, 1994, 4, 108-111.	2.0	15
107	Immunocytochemical demonstration of early appearing astroglial structures that form boundaries and pathways along axon tracts in the fetal brain. Journal of Comparative Neurology, 1993, 328, 415-436.	0.9	188
108	Establishment and neurite outgrowth properties of neonatal and adult rat olfactory bulb glial cell lines. Brain Research, 1993, 619, 199-213.	1.1	89

#	Article	IF	CITATIONS
109	Chondroitin Sulfate Proteoglycans Are Associated with the Lesions of Alzheimer's Disease. Experimental Neurology, 1993, 121, 149-152.	2.0	163
110	β-Amyloid of Alzheimer's Disease Induces Reactive Gliosis That Inhibits Axonal Outgrowth. Experimental Neurology, 1993, 124, 289-298.	2.0	132
111	Formation of the retinal ganglion cell and optic fiber layers. Journal of Neurobiology, 1991, 22, 85-96.	3.7	73
112	Molecular and cellular characterization of the glial roof plate of the spinal cord and optic tectum: A possible role for a proteoglycan in the development of an axon barrier. Developmental Biology, 1990, 138, 359-376.	0.9	387
113	Maturation of astrocytes in vitro alters the extent and molecular basis of neurite outgrowth. Developmental Biology, 1990, 138, 377-390.	0.9	297
114	Astrocyte-polymer implants promote regeneration of dorsal root fibers into the adult mammalian spinal cord. Experimental Neurology, 1990, 109, 57-69.	2.0	102
115	A comparison of the regeneration potential of dorsal root fibers into gray or white matter of the adult rat spinal cord. Experimental Neurology, 1990, 109, 90-97.	2.0	32
116	Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Experimental Neurology, 1990, 109, 111-130.	2.0	709
117	Failure of the subcallosal sling to develop after embryonic x-irradiation is correlated with absence of the cavum septi. Journal of Comparative Neurology, 1990, 299, 462-469.	0.9	11
118	Development of intersecting CNS fiber tracts: The corpus callosum and its perforating fiber pathway. Journal of Comparative Neurology, 1988, 272, 177-190.	0.9	44
119	Death of the subcallosal glial sling is correlated with formation of the cavum septi pellucidi. Journal of Comparative Neurology, 1988, 272, 191-202.	0.9	41
120	Chapter 45 Transplantation of immature and mature astrocytes and their effect on scar formation in the lesioned central nervous system. Progress in Brain Research, 1988, 78, 353-361.	0.9	62
121	Is astrocyte laminin involved in axon guidance in the mammalian CNS?. Developmental Biology, 1988, 130, 774-785.	0.9	205
122	Astrocyte Transplantation Induces Callosal Regeneration in Postnatal Acallosal Mice. Annals of the New York Academy of Sciences, 1987, 495, 185-205.	1.8	24
123	Growth pattern of pioneering chick spinal cord axons. Developmental Biology, 1987, 123, 375-388.	0.9	47
124	Transplantation of Neural Tissue from Fetuses. Science, 1987, 235, 1307-1308.	6.0	5
125	Changing role of forebrain astrocytes during development, regenerative failure, and induced regeneration upon transplantation. Journal of Comparative Neurology, 1986, 251, 23-43.	0.9	369
126	Studies on the factors that govern directionality of axonal growth in the embryonic optic nerve and at the chiasm of mice. Journal of Comparative Neurology, 1984, 223, 238-251.	0.9	180

#	Article	IF	CITATIONS
127	Guidance of optic axons in vivo by a preformed adhesive pathway on neuroepithelial endfeet. Developmental Biology, 1984, 106, 485-499.	0.9	391
128	Development and aging of the eye in mice with inherited optic nerve aplasia: Histopathological studies. Experimental Eye Research, 1984, 38, 257-266.	1.2	9
129	Effects of gonadal steroids on the in vivo binding of [125I]α-bungarotoxin to the suprachiasmatic nucleus. Brain Research, 1984, 290, 67-75.	1.1	37
130	Studies on cell migration and axon guidance in the developing distal auditory system of the mouse. Journal of Comparative Neurology, 1983, 215, 359-369.	0.9	129
131	Crystallin synthesis in the lens rudiment of a strain of mice with congenital anophthalmia. Experimental Eye Research, 1983, 36, 551-557.	1.2	29
132	Development of the outer plexiform layer in albino rats. Current Eye Research, 1982, 2, 295-299.	0.7	17
133	Effects of ovariectomy on the binding of [125I]-αbungarotoxin (2.2 and 3.3) to the suprachiasmatic nucleus of the hypothalamus: An in vivo autoradiographic analysis. Brain Research, 1982, 247, 355-364.	1.1	40
134	Axonal guidance during development of the great cerebral commissures: Descriptive and experimental studies, in vivo, on the role of preformed glial pathways. Journal of Comparative Neurology, 1982, 210, 10-29.	0.9	564
135	Investigation of circadian rhythms in a genetically anophthalmic mouse strain: Correlation of activity patterns with suprachiasmatic nuclei hypogenesis. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1982, 149, 333-338.	0.7	24
136	Inverted Xenopus eye primordia develop into anatomically inverted eyes. Developmental Biology, 1981, 86, 510-514.	0.9	5
137	Axonal guidance during development of the optic nerve: The role of pigmented epithelia and other extrinsic factors. Journal of Comparative Neurology, 1981, 202, 521-538.	0.9	228
138	A mechanism for the guidance and topographic patterning of retinal ganglion cell axons. Journal of Comparative Neurology, 1980, 189, 101-111.	0.9	311
139	A route for direct retinal input to the preoptic hypothalamus: Dendritic projections into the optic chiasm. American Journal of Anatomy, 1979, 155, 391-401.	0.9	20
140	Studies on the development of the eye cup and optic nerve in normal mice and in mutants with congenital optic nerve aplasia. Developmental Biology, 1979, 68, 175-190.	0.9	205
141	Abnormal development of the suprachiasmatic nuclei of the hypothalamus in a strain of genetically anophthalmic mice. Journal of Comparative Neurology, 1977, 176, 589-606.	0.9	47
142	Effects of the glial scar and extracellular matrix molecules on axon regeneration. , 0, , 390-404.		0
143	Effects of the glial scar and extracellular matrix molecules on axon regeneration. , 0, , 376-391.		0