Min Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10629285/publications.pdf

Version: 2024-02-01

201575 254106 2,401 44 27 43 citations h-index g-index papers 45 45 45 3569 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nature Communications, 2018, 9, 979.	5.8	338
2	Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nature Communications, 2017, 8, 958.	5.8	191
3	Sustainable high-strength macrofibres extracted from natural bamboo. Nature Sustainability, 2022, 5, 235-244.	11.5	113
4	Rational design of sandwiched polyaniline nanotube/layered graphene/polyaniline nanotube papers for high-volumetric supercapacitors. Chemical Engineering Journal, 2017, 309, 89-97.	6.6	102
5	A high-entropy phosphate catalyst for oxygen evolution reaction. Nano Energy, 2021, 86, 106029.	8.2	100
6	Continuous Synthesis of Hollow Highâ€Entropy Nanoparticles for Energy and Catalysis Applications. Advanced Materials, 2020, 32, e2002853.	11.1	93
7	Ta–TiOx nanoparticles as radical scavengers to improve the durability of Fe–N–C oxygen reduction catalysts. Nature Energy, 2022, 7, 281-289.	19.8	93
8	Chemical Vapor Deposition Grown Large-Scale Atomically Thin Platinum Diselenide with Semimetal–Semiconductor Transition. ACS Nano, 2019, 13, 8442-8451.	7.3	87
9	Scalable Synthesis of High Entropy Alloy Nanoparticles by Microwave Heating. ACS Nano, 2021, 15, 14928-14937.	7.3	85
10	A dual CoNi MOF nanosheet/nanotube assembled on carbon cloth for high performance hybrid supercapacitors. Electrochimica Acta, 2020, 342, 136124.	2.6	77
11	Vertical 1Tâ€TaS ₂ Synthesis on Nanoporous Gold for Highâ€Performance Electrocatalytic Applications. Advanced Materials, 2018, 30, e1705916.	11.1	75
12	Chemical Vapor Deposition Grown Waferâ€Scale 2D Tantalum Diselenide with Robust Chargeâ€Densityâ€Wave Order. Advanced Materials, 2018, 30, e1804616.	11.1	63
13	Cobalt Doping To Boost the Electrochemical Properties of Ni@Ni ₃ S ₂ Nanowire Films for Highâ€Performance Supercapacitors. ChemSusChem, 2017, 10, 4056-4065.	3.6	61
14	Defect-Engineered NiCo-S Composite as a Bifunctional Electrode for High-Performance Supercapacitor and Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2021, 13, 47717-47727.	4.0	61
15	Two-Dimensional Metallic NiTe ₂ with Ultrahigh Environmental Stability, Conductivity, and Electrocatalytic Activity. ACS Nano, 2020, 14, 9011-9020.	7.3	60
16	Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Communications Chemistry, 2018, 1 , .	2.0	58
17	Scalable Production of Two-Dimensional Metallic Transition Metal Dichalcogenide Nanosheet Powders Using NaCl Templates toward Electrocatalytic Applications. Journal of the American Chemical Society, 2019, 141, 18694-18703.	6.6	56
18	Bi-metal organic framework nanosheets assembled on nickel wire films for volumetric-energy-dense supercapacitors. Journal of Power Sources, 2019, 423, 80-89.	4.0	50

#	Article	IF	Citations
19	Two-Dimensional Metallic Vanadium Ditelluride as a High-Performance Electrode Material. ACS Nano, 2021, 15, 1858-1868.	7.3	49
20	Scalable synthesis of \hat{I}^3 -Fe2O3/CNT composite as high-performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 770, 116-124.	2.8	47
21	High-Temperature Continuous-Wave Pumped Lasing from Large-Area Monolayer Semiconductors Grown by Chemical Vapor Deposition. ACS Nano, 2018, 12, 9390-9396.	7.3	44
22	Rapid Synthesis of Highâ€Entropy Oxide Microparticles. Small, 2022, 18, e2104761.	5.2	41
23	Ultrafast Sintering of Solid-State Electrolytes with Volatile Fillers. ACS Energy Letters, 2021, 6, 3753-3760.	8.8	39
24	Unique Transformation from Graphene to Carbide on Re(0001) Induced by Strong Carbon–Metal Interaction. Journal of the American Chemical Society, 2017, 139, 17574-17581.	6.6	38
25	A high performance lithium-ion–sulfur battery with a free-standing carbon matrix supported Li-rich alloy anode. Chemical Science, 2018, 9, 8829-8835.	3.7	36
26	Microscopic insights into the catalytic mechanisms of monolayer MoS2 and its heterostructures in hydrogen evolution reaction. Nano Research, 2019, 12, 2140-2149.	5.8	33
27	Tailoring grain growth and densification toward a high-performance solid-state electrolyte membrane. Materials Today, 2021, 42, 41-48.	8.3	32
28	High-Temperature Pulse Method for Nanoparticle Redispersion. Journal of the American Chemical Society, 2020, 142, 17364-17371.	6.6	28
29	Scalable salt-templated directed synthesis of high-quality MoS2 nanosheets powders towards energetic and environmental applications. Nano Research, 2020, 13, 3098-3104.	5.8	24
30	Highâ€Temperature Ultrafast Sintering: Exploiting a New Kinetic Region to Fabricate Porous Solidâ€State Electrolyte Scaffolds. Advanced Materials, 2021, 33, e2100726.	11.1	24
31	Biomass-Derived Anion-Anchoring Nano-CaCO ₃ Coating for Regulating Ion Transport on Li Metal Surface. Nano Letters, 2022, 22, 5473-5480.	4.5	23
32	Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils. Nano Research, 2019, 12, 149-157.	5.8	22
33	Rapid Pressureless Sintering of Glasses. Small, 2022, 18, e2107951.	5. 2	20
34	Giant Thicknessâ€Tunable Bandgap and Robust Air Stability of 2D Palladium Diselenide. Small, 2020, 16, e2000754.	5.2	19
35	Decoupling the Interaction between Wetâ€Transferred MoS ₂ and Graphite Substrate by an Interfacial Water Layer. Advanced Materials Interfaces, 2018, 5, 1800641.	1.9	18
36	Flexible graphene/carbon nanotube hybrid papers chemical-reduction-tailored by gallic acid for high-performance electrochemical capacitive energy storages. Applied Surface Science, 2018, 435, 699-707.	3.1	17

#	Article	IF	CITATIONS
37	Insights into high capacity and ultrastable carbonaceous anodes for potassium-ion storage <i>via</i> a hierarchical heterostructure. Journal of Materials Chemistry A, 2020, 8, 2836-2842.	5.2	15
38	Quasi-freestanding, striped WS2 monolayer with an invariable band gap on Au(001). Nano Research, 2017, 10, 3875-3884.	5.8	13
39	Irreparable Defects Produced by the Patching of <i>h</i> -BN Frontiers on Strongly Interacting Re(0001) and Their Electronic Properties. Journal of the American Chemical Society, 2017, 139, 5849-5856.	6.6	11
40	Effect of substrate symmetry on the orientations of MoS ₂ monolayers. Nanotechnology, 2021, 32, 095601.	1.3	9
41	Intercalation-Mediated Synthesis and Interfacial Coupling Effect Exploration of Unconventional Graphene/PtSe ₂ Vertical Heterostructures. ACS Applied Materials & Amp; Interfaces, 2019, 11, 48221-48229.	4.0	7
42	Target-Sintering of Single-Phase Bulk Intermetallics via a Fast-Heating-Induced Rapid Interdiffusion Mechanism., 2022, 4, 480-486.		6
43	In situ coating nickel organic complexes on free-standing nickel wire films for volumetric-energy-dense supercapacitors. Nanotechnology, 2018, 29, 275401.	1.3	5
44	2D Palladium Diselenide: Giant Thickness‶unable Bandgap and Robust Air Stability of 2D Palladium Diselenide (Small 19/2020). Small, 2020, 16, 2070106.	5.2	0