Christopher McNeill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/106254/publications.pdf Version: 2024-02-01

262 papers	15,576 citations	14655 66 h-index	20961 115 g-index
271	271	271	14353
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC ₇₁ BM Solar Cells. Advanced Energy Materials, 2013, 3, 65-74.	19.5	605
2	Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy, 2014, 10, 10-18.	16.0	504
3	An Alkylated Indacenodithieno[3,2â€ <i>b</i>]thiopheneâ€Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater than 13% with Low Voltage Losses. Advanced Materials, 2018, 30, 1705209.	21.0	474
4	Critical Role of Alkyl Chain Branching of Organic Semiconductors in Enabling Solution-Processed N-Channel Organic Thin-Film Transistors with Mobility of up to 3.50 cm ² V ^{–1} s ^{–1} . Journal of the American Chemical Society, 2013, 135, 2338-2349.	13.7	379
5	Molecular Miscibility of Polymerâ^'Fullerene Blends. Journal of Physical Chemistry Letters, 2010, 1, 3160-3166.	4.6	362
6	Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Science Advances, 2017, 3, e1601935.	10.3	354
7	Conjugatedâ€₽olymer Blends for Optoelectronics. Advanced Materials, 2009, 21, 3840-3850.	21.0	293
8	Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nature Materials, 2012, 11, 536-543.	27.5	281
9	Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics. Nature Communications, 2015, 6, 8394.	12.8	280
10	Morphology of all-polymer solar cells. Energy and Environmental Science, 2012, 5, 5653.	30.8	275
11	Oriented Quasiâ€2D Perovskites for High Performance Optoelectronic Devices. Advanced Materials, 2018, 30, e1804771.	21.0	268
12	Effects of Layer Thickness and Annealing of PEDOT:PSS Layers in Organic Photodetectors. Macromolecules, 2009, 42, 6741-6747.	4.8	253
13	Efficient Polythiophene/Polyfluorene Copolymer Bulk Heterojunction Photovoltaic Devices: Device Physics and Annealing Effects. Advanced Functional Materials, 2008, 18, 2309-2321.	14.9	242
14	Comparison of the Operation of Polymer/Fullerene, Polymer/Polymer, and Polymer/Nanocrystal Solar Cells: A Transient Photocurrent and Photovoltage Study. Advanced Functional Materials, 2011, 21, 1419-1431.	14.9	241
15	Dual electron donor/electron acceptor character of a conjugated polymer in efficient photovoltaic diodes. Applied Physics Letters, 2007, 90, 193506.	3.3	223
16	Influence of Backbone Fluorination in Regioregular Poly(3-alkyl-4-fluoro)thiophenes. Journal of the American Chemical Society, 2015, 137, 6866-6879.	13.7	211
17	Influence of Nanoscale Phase Separation on the Charge Generation Dynamics and Photovoltaic Performance of Conjugated Polymer Blends:  Balancing Charge Generation and Separation. Journal of Physical Chemistry C, 2007, 111, 19153-19160.	3.1	209
18	Highly Exfoliated MWNT–rGO Ink-Wrapped Polyurethane Foam for Piezoresistive Pressure Sensor Applications. ACS Applied Materials & Interfaces, 2018, 10, 5185-5195.	8.0	208

#	Article	IF	CITATIONS
19	Polymer Blend Solar Cells Based on a Highâ€Mobility Naphthalenediimideâ€Based Polymer Acceptor: Device Physics, Photophysics and Morphology. Advanced Energy Materials, 2011, 1, 230-240.	19.5	199
20	Nanomorphology of Bulk Heterojunction Photovoltaic Thin Films Probed with Resonant Soft X-ray Scattering. Nano Letters, 2010, 10, 2863-2869.	9.1	182
21	Incorporation of 2,6â€Connected Azulene Units into the Backbone of Conjugated Polymers: Towards Highâ€Performance Organic Optoelectronic Materials. Angewandte Chemie - International Edition, 2018, 57, 1322-1326.	13.8	160
22	Observation of a Distinct Surface Molecular Orientation in Films of a High Mobility Conjugated Polymer. Journal of the American Chemical Society, 2013, 135, 1092-1101.	13.7	150
23	Correlating the Efficiency and Nanomorphology of Polymer Blend Solar Cells Utilizing Resonant Soft X-ray Scattering. ACS Nano, 2012, 6, 677-688.	14.6	149
24	Selfâ€Assembled 2D Perovskite Layers for Efficient Printable Solar Cells. Advanced Energy Materials, 2019, 9, 1803258.	19.5	149
25	Two-Dimensional π-Expanded Quinoidal Terthiophenes Terminated with Dicyanomethylenes as n-Type Semiconductors for High-Performance Organic Thin-Film Transistors. Journal of the American Chemical Society, 2014, 136, 16176-16184.	13.7	147
26	Highly Efficient Singleâ€Layer Polymer Ambipolar Lightâ€Emitting Fieldâ€Effect Transistors. Advanced Materials, 2012, 24, 2728-2734.	21.0	146
27	Photocurrent transients in all-polymer solar cells: Trapping and detrapping effects. Journal of Applied Physics, 2009, 106, .	2.5	144
28	Chargeâ€Transport Anisotropy in a Uniaxially Aligned Diketopyrrolopyrroleâ€Based Copolymer. Advanced Materials, 2015, 27, 7356-7364.	21.0	144
29	Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy, 2017, 31, 210-217.	16.0	142
30	Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells. Journal of Applied Physics, 2009, 106, .	2.5	141
31	Selenium‣ubstituted Diketopyrrolopyrrole Polymer for Highâ€Performance pâ€Type Organic Thermoelectric Materials. Angewandte Chemie - International Edition, 2019, 58, 18994-18999.	13.8	136
32	Allâ€Inkjetâ€Printed, Allâ€Airâ€Processed Solar Cells. Advanced Energy Materials, 2014, 4, 1400432.	19.5	135
33	The Binding Energy of Charge-Transfer Excitons Localized at Polymeric Semiconductor Heterojunctions. Journal of Physical Chemistry C, 2011, 115, 7114-7119.	3.1	131
34	A Highly Sensitive Diketopyrrolopyrroleâ€Based Ambipolar Transistor for Selective Detection and Discrimination of Xylene Isomers. Advanced Materials, 2016, 28, 4012-4018.	21.0	129
35	Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. Nature Communications, 2018, 9, 2933.	12.8	118
36	Performance, morphology and photophysics of high open-circuit voltage, low band gap all-polymer solar cells. Energy and Environmental Science, 2015, 8, 332-342.	30.8	115

#	Article	IF	CITATIONS
37	Nanoscale Quantitative Chemical Mapping of Conjugated Polymer Blends. Nano Letters, 2006, 6, 1202-1206.	9.1	112
38	<i>Quick AS NEXAFS Tool</i> (<i>QANT</i>): a program for NEXAFS loading and analysis developed at the Australian Synchrotron. Journal of Synchrotron Radiation, 2016, 23, 374-380.	2.4	110
39	Influence of Annealing and Interfacial Roughness on the Performance of Bilayer Donor/Acceptor Polymer Photovoltaic Devices. Advanced Functional Materials, 2010, 20, 4329-4337.	14.9	105
40	Surface and Bulk Structural Characterization of a High-Mobility Electron-Transporting Polymer. Macromolecules, 2011, 44, 1530-1539.	4.8	105
41	Structure–Function Relationships of High-Electron Mobility Naphthalene Diimide Copolymers Prepared Via Direct Arylation. Chemistry of Materials, 2014, 26, 6233-6240.	6.7	105
42	Alkylated Selenophene-Based Ladder-Type Monomers via a Facile Route for High-Performance Thin-Film Transistor Applications. Journal of the American Chemical Society, 2017, 139, 8552-8561.	13.7	105
43	Microstructure of Polycrystalline PBTTT Films: Domain Mapping and Structure Formation. ACS Nano, 2012, 6, 1849-1864.	14.6	104
44	Highâ€Performance Allâ€Polymer Solar Cells Enabled by nâ€Type Polymers with an Ultranarrow Bandgap Down to 1.28 eV. Advanced Materials, 2020, 32, e2001476.	21.0	103
45	X-ray Microscopy of Photovoltaic Polyfluorene Blends:Â Relating Nanomorphology to Device Performance. Macromolecules, 2007, 40, 3263-3270.	4.8	102
46	Efficient and Mechanically Robust Ultraflexible Organic Solar Cells Based on Mixed Acceptors. Joule, 2020, 4, 128-141.	24.0	101
47	Unraveling the Morphology of High Efficiency Polymer Solar Cells Based on the Donor Polymer PBDTTTâ€EFT. Advanced Energy Materials, 2015, 5, 1401259.	19.5	100
48	Influence of Alkyl Side-Chain Length on the Performance of Poly(3-alkylthiophene)/Polyfluorene All-Polymer Solar Cells. Chemistry of Materials, 2010, 22, 3389-3398.	6.7	97
49	Photophysics and Photocurrent Generation in Polythiophene/Polyfluorene Copolymer Blends. Advanced Functional Materials, 2009, 19, 3103-3111.	14.9	96
50	Pursuing Highâ€Mobility nâ€Type Organic Semiconductors by Combination of "Moleculeâ€Framework―and "Sideâ€Chain―Engineering. Advanced Materials, 2016, 28, 8456-8462.	21.0	93
51	A Unified Description of Current–Voltage Characteristics in Organic and Hybrid Photovoltaics under Low Light Intensity. Nano Letters, 2008, 8, 1393-1398.	9.1	92
52	Quantum efficiency of ambipolar light-emitting polymer field-effect transistors. Journal of Applied Physics, 2008, 103, .	2.5	89
53	Alkylâ€Chainâ€Lengthâ€Independent Hole Mobility via Morphological Control with Poly(3â€alkylthiophene) Nanofibers. Advanced Functional Materials, 2010, 20, 792-802.	14.9	89
54	Enabling high-mobility, ambipolar charge-transport in a DPP-benzotriazole copolymer by side-chain engineering. Chemical Science, 2015, 6, 6949-6960.	7.4	89

#	Article	IF	CITATIONS
55	Mapping of Domain Orientation and Molecular Order in Polycrystalline Semiconducting Polymer Films with Soft Xâ€Ray Microscopy. Advanced Functional Materials, 2011, 21, 1122-1131.	14.9	86
56	Trap-Induced Losses in Hybrid Photovoltaics. ACS Nano, 2014, 8, 3213-3221.	14.6	84
57	Low-Temperature Control of Nanoscale Morphology for High Performance Polymer Photovoltaics. Nano Letters, 2008, 8, 3942-3947.	9.1	82
58	Dithiopheneindenofluorene (TIF) Semiconducting Polymers with Very High Mobility in Fieldâ€Effect Transistors. Advanced Materials, 2017, 29, 1702523.	21.0	81
59	Transient photocurrent measurements of PCDTBT:PC70BM and PCPDTBT:PC70BM Solar Cells: Evidence for charge trapping in efficient polymer/fullerene blends. Journal of Applied Physics, 2011, 109, 074513.	2.5	79
60	Cholesteric Aggregation at the Quinoidal-to-Diradical Border Enabled Stable n-Doped Conductor. CheM, 2019, 5, 964-976.	11.7	79
61	Near-Field Scanning Photocurrent Measurements of Polyfluorene Blend Devices:Â Directly Correlating Morphology with Current Generation. Nano Letters, 2004, 4, 2503-2507.	9.1	78
62	Direct Photocurrent Mapping of Organic Solar Cells Using a Near-Field Scanning Optical Microscope. Nano Letters, 2004, 4, 219-223.	9.1	77
63	Soft X-ray characterisation of organic semiconductor films. Journal of Materials Chemistry C, 2013, 1, 187-201.	5.5	75
64	Highâ€Mobility Naphthalene Diimide and Selenopheneâ€Vinyleneâ€Selenopheneâ€Based Conjugated Polymer: nâ€Channel Organic Fieldâ€Effect Transistors and Structure–Property Relationship. Advanced Functional Materials, 2016, 26, 4984-4997.	14.9	75
65	Understanding and Improving Solid-State Polymer/C60-Fullerene Bulk-Heterojunction Solar Cells Using Ternary Porphyrin Blends. Journal of Physical Chemistry C, 2007, 111, 15415-15426.	3.1	72
66	Alkali Cation Doping for Improving the Structural Stability of 2D Perovskite in 3D/2D PSCs. Nano Letters, 2020, 20, 1240-1251.	9.1	68
67	Acene Ring Size Optimization in Fused Lactam Polymers Enabling High n-Type Organic Thermoelectric Performance. Journal of the American Chemical Society, 2021, 143, 260-268.	13.7	68
68	Light induced degradation in mixed-halide perovskites. Journal of Materials Chemistry C, 2019, 7, 9326-9334.	5.5	67
69	Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells. Communications Materials, 2020, 1, .	6.9	66
70	Tuning the Molecular Weight of the Electron Accepting Polymer in Allâ€Polymer Solar Cells: Impact on Morphology and Charge Generation. Advanced Functional Materials, 2018, 28, 1707185.	14.9	65
71	Nature and Extent of Solution Aggregation Determines the Performance of P(NDI2ODâ€T2) Thinâ€Film Transistors. Advanced Electronic Materials, 2018, 4, 1700559.	5.1	64
72	NEXAFS spectroscopy of conjugated polymers. European Polymer Journal, 2016, 81, 532-554.	5.4	63

#	Article	IF	CITATIONS
73	Interfacial disorder in efficient polymer solar cells: the impact of donor molecular structure and solvent additives. Journal of Materials Chemistry A, 2017, 5, 24749-24757.	10.3	63
74	Blade Coating Aligned, High-Performance, Semiconducting-Polymer Transistors. Chemistry of Materials, 2018, 30, 1924-1936.	6.7	63
75	Fullerene-Dependent Miscibility in the Silole-Containing Copolymer PSBTBT-08. Macromolecules, 2011, 44, 9747-9751.	4.8	59
76	Spinodal Decomposition of Blends of Semiconducting and Ferroelectric Polymers. Advanced Functional Materials, 2011, 21, 1887-1894.	14.9	58
77	Unconventional Molecular Weight Dependence of Charge Transport in the High Mobility nâ€ŧype Semiconducting Polymer P(NDI2ODâ€∓2). Advanced Functional Materials, 2017, 27, 1604744.	14.9	58
78	X-ray Spectromicroscopy of Polymer/Fullerene Composites: Quantitative Chemical Mapping. Small, 2006, 2, 1432-1435.	10.0	57
79	Probing Molecular and Crystalline Orientation in Solutionâ€Processed Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 5529-5536.	14.9	57
80	Subâ€Micrometer Charge Modulation Microscopy of a High Mobility Polymeric nâ€Channel Fieldâ€Effect Transistor. Advanced Materials, 2011, 23, 5086-5090.	21.0	55
81	An optical fibre-based sensor for the detection of gaseous ammonia with methylammonium lead halide perovskite. Journal of Materials Chemistry C, 2018, 6, 6988-6995.	5.5	54
82	Tuning Orientational Order of Highly Aggregating P(NDI2OD-T ₂) by Solvent Vapor Annealing and Blade Coating. Macromolecules, 2019, 52, 43-54.	4.8	54
83	Voltage-dependent photocurrent transients of PTB7:PC70BM solar cells: Experiment and numerical simulation. Journal of Applied Physics, 2013, 114, .	2.5	52
84	Influence of nanoparticle shape on charge transport and recombination in polymer/nanocrystal solar cells. Physical Chemistry Chemical Physics, 2014, 16, 25684-25693.	2.8	52
85	Structure Influence on Charge Transport in Naphthalenediimide–Thiophene Copolymers. Chemistry of Materials, 2014, 26, 6796-6804.	6.7	51
86	Structure of Phaseâ€Separated Ferroelectric/Semiconducting Polymer Blends for Organic Nonâ€volatile Memories. Small, 2010, 6, 508-512.	10.0	50
87	Alternating 5,5-Dimethylcyclopentadiene and Diketopyrrolopyrrole Copolymer Prepared at Room Temperature for High Performance Organic Thin-Film Transistors. Journal of the American Chemical Society, 2017, 139, 8094-8097.	13.7	49
88	Simultaneous Surface and Bulk Imaging of Polymer Blends with Xâ€ray Spectromicroscopy. Macromolecular Rapid Communications, 2010, 31, 1706-1712.	3.9	48
89	Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units. Chemistry of Materials, 2016, 28, 8580-8590.	6.7	48
90	Evolution of the nanomorphology of photovoltaic polyfluorene blends: sub-100 nm resolution with x-ray spectromicroscopy. Nanotechnology, 2008, 19, 424015.	2.6	47

#	Article	lF	CITATIONS
91	Hole mobility of 3.56 cm ² V ^{â^'1} s ^{â^'1} accomplished using more extended dithienothiophene with furan flanked diketopyrrolopyrrole polymer. Journal of Materials Chemistry C, 2015, 3, 9299-9305.	5.5	47
92	Control of Molecular Orientation in Polydiketopyrrolopyrrole Copolymers via Diffusive Noncovalent Interactions. Chemistry of Materials, 2016, 28, 7088-7097.	6.7	47
93	Increased Exciton Dipole Moment Translates into Charge-Transfer Excitons in Thiophene-Fluorinated Low-Bandgap Polymers for Organic Photovoltaic Applications. Chemistry of Materials, 2015, 27, 7934-7944.	6.7	46
94	Allâ€polymer solar cells utilizing low band gap polymers as donor and acceptor. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 403-409.	2.1	44
95	Raman Spectroscopy of Formamidinium-Based Lead Halide Perovskite Single Crystals. Journal of Physical Chemistry C, 2020, 124, 2265-2272.	3.1	44
96	Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy, 2020, 75, 104917.	16.0	44
97	Evolution of Laterally Phase-Separated Polyfluorene Blend Morphology Studied by X-ray Spectromicroscopy. Macromolecules, 2009, 42, 3347-3352.	4.8	43
98	Influence of Fluorination and Molecular Weight on the Morphology and Performance of PTB7:PC ₇₁ BM Solar Cells. Journal of Physical Chemistry C, 2014, 118, 9918-9929.	3.1	43
99	Role of Solvent Trapping Effects in Determining the Structure and Morphology of Ternary Blend Organic Devices. Macromolecules, 2009, 42, 3098-3103.	4.8	42
100	Charge transport dynamics of polymer solar cells under operating conditions: Influence of trap filling. Applied Physics Letters, 2008, 93, 203310.	3.3	41
101	Influence of solution heating on the properties of PEDOT:PSS colloidal solutions and impact on the device performance of polymer solar cells. Organic Electronics, 2011, 12, 1736-1745.	2.6	41
102	Naphthalene diimide-based small molecule acceptors for organic solar cells. Journal of Materials Chemistry A, 2017, 5, 12266-12277.	10.3	41
103	Critical Role of Pendant Group Substitution on the Performance of Efficient All-Polymer Solar Cells. Chemistry of Materials, 2017, 29, 804-816.	6.7	41
104	Incorporation of 2,6 onnected Azulene Units into the Backbone of Conjugated Polymers: Towards Highâ€Performance Organic Optoelectronic Materials. Angewandte Chemie, 2018, 130, 1336-1340.	2.0	40
105	Polaron spin dynamics in high-mobility polymeric semiconductors. Nature Physics, 2019, 15, 814-822.	16.7	40
106	Studying Polymer/Fullerene Intermixing and Miscibility in Laterally Patterned Films with Xâ€Ray Spectromicroscopy. Small, 2012, 8, 1920-1927.	10.0	39
107	Effects of PNDIT2 end groups on aggregation, thin film structure, alignment and electron transport in field-effect transistors. Journal of Materials Chemistry C, 2016, 4, 10371-10380.	5.5	39
108	Drastic Improvement of Air Stability in an n-Type Doped Naphthalene-Diimide Polymer by Thionation. ACS Applied Energy Materials, 2018, 1, 4626-4634.	5.1	39

#	Article	IF	CITATIONS
109	Excitons and charges at organic semiconductor heterojunctions. Faraday Discussions, 2012, 155, 339-348.	3.2	38
110	A facile approach to alleviate photochemical degradation in high efficiency polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 16313-16319.	10.3	38
111	Influence of Fullerene Acceptor on the Performance, Microstructure, and Photophysics of Low Bandgap Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1602197.	19.5	38
112	In-Depth Understanding of the Morphology–Performance Relationship in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 14026-14034.	8.0	36
113	Device physics of inverted all-polymer solar cells. Journal of Applied Physics, 2010, 107, .	2.5	35
114	The utility of resonant soft x-ray scattering and reflectivity for the nanoscale characterization of polymers. European Physical Journal: Special Topics, 2009, 167, 121-126.	2.6	34
115	Förster Resonance Energy Transfer Drives Higher Efficiency in Ternary Blend Organic Solar Cells. ACS Applied Energy Materials, 2018, 1, 4874-4882.	5.1	34
116	Spatially Resolved Spectroscopic Mapping of Photocurrent and Photoluminescence in Polymer Blend Photovoltaic Devices. Journal of Physical Chemistry C, 2011, 115, 19364-19370.	3.1	33
117	Phase-Dependent Photocurrent Generation in Polymer/Fullerene Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2011, 115, 22075-22083.	3.1	33
118	Influence of alkyl side-chain type and length on the thin film microstructure and OFET performance of naphthalene diimide-based organic semiconductors. Organic Electronics, 2019, 75, 105378.	2.6	33
119	Imaging the domain structure of organic semiconductor films. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 909-919.	2.1	32
120	Detection of Halomethanes Using Cesium Lead Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 1454-1464.	14.6	32
121	Correlation between Photovoltaic Performance and Interchain Ordering Induced Delocalization of Electronics States in Conjugated Polymer Blends. ACS Applied Materials & Interfaces, 2016, 8, 20243-20250.	8.0	31
122	Isolating and quantifying the impact of domain purity on the performance of bulk heterojunction solar cells. Energy and Environmental Science, 2017, 10, 1843-1853.	30.8	31
123	Impact of Acceptor Fluorination on the Performance of All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 955-969.	8.0	31
124	High Mobility Indium Oxide Electron Transport Layer for an Efficient Charge Extraction and Optimized Nanomorphology in Organic Photovoltaics. Nano Letters, 2018, 18, 5805-5811.	9.1	31
125	Crucial Role of Fluorine in Fully Alkylated Ladder-Type Carbazole-Based Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 9555-9562.	8.0	31
126	Revealing the Sideâ€Chainâ€Dependent Ordering Transition of Highly Crystalline Doubleâ€Cable Conjugated Polymers. Angewandte Chemie - International Edition, 2021, 60, 25499-25507.	13.8	31

#	Article	IF	CITATIONS
127	Nanostructure characterization by a combined x-ray absorption/scanning force microscopy system. Nanotechnology, 2012, 23, 475708.	2.6	30
128	Microstructural control suppresses thermal activation of electron transport at room temperature in polymer transistors. Nature Communications, 2019, 10, 3365.	12.8	30
129	Indole-substituted nickel dithiolene complexes in electronic and optoelectronic devices. Journal of Materials Chemistry, 2011, 21, 15422.	6.7	29
130	Organic field-effect transistors and solar cells using novel high electron-affinity conjugated copolymers based on alkylbenzotriazole and benzothiadiazole. Journal of Materials Chemistry, 2012, 22, 4436.	6.7	29
131	Influence of fluorination in π-extended backbone polydiketopyrrolopyrroles on charge carrier mobility and depth-dependent molecular alignment. Journal of Materials Chemistry C, 2015, 3, 8916-8925.	5.5	29
132	High-Mobility Ambipolar Organic Thin-Film Transistor Processed From a Nonchlorinated Solvent. ACS Applied Materials & Interfaces, 2016, 8, 24325-24330.	8.0	29
133	Diffractive X-ray Waveguiding Reveals Orthogonal Crystalline Stratification in Conjugated Polymer Thin Films. Macromolecules, 2018, 51, 2979-2987.	4.8	29
134	<i>N</i> -Alkyl substituted 1 <i>H</i> -benzimidazoles as improved n-type dopants for a naphthalene-diimide based copolymer. Journal of Materials Chemistry A, 2018, 6, 15294-15302.	10.3	28
135	Charge transport physics of a unique class of rigid-rod conjugated polymers with fused-ring conjugated units linked by double carbon-carbon bonds. Science Advances, 2021, 7, .	10.3	28
136	X-ray diffraction of photovoltaic perovskites: Principles and applications. Applied Physics Reviews, 2022, 9, .	11.3	28
137	Double able Conjugated Polymers with Pendent Nearâ€Infrared Electron Acceptors for Single omponent Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
138	Interfaces in organic devices studied with resonant soft x-ray reflectivity. Journal of Applied Physics, 2011, 110, .	2.5	27
139	Near-edge X-ray absorption fine-structure spectroscopy of naphthalene diimide-thiophene co-polymers. Journal of Chemical Physics, 2014, 140, 164710.	3.0	27
140	Conjugated Polyelectrolyte Blend with Polyethyleneimine Ethoxylated for Thickness-Insensitive Electron Injection Layers in Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 17318-17326.	8.0	27
141	Synthesis and Aggregation Behavior of a Glycolated Naphthalene Diimide Bithiophene Copolymer for Application in Low-Level n-Doped Organic Thermoelectrics. Macromolecules, 2020, 53, 5158-5168.	4.8	27
142	Direct influence of morphology on current generation in conjugated polymer:methanofullerene solar cells measured by near-field scanning photocurrent microscopy. Synthetic Metals, 2004, 147, 101-104.	3.9	26
143	White-light bias external quantum efficiency measurements of standard and inverted P3HT : PCBM photovoltaic cells. Journal Physics D: Applied Physics, 2012, 45, 415101.	2.8	26
144	Fused Cyclopentadithienothiophene Acceptor Enables Ultrahigh Shortâ€Circuit Current and High Efficiency >11% in Asâ€Cast Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1904956.	14.9	26

#	Article	IF	CITATIONS
145	Oriented Attachment as the Mechanism for Microstructure Evolution in Chloride-Derived Hybrid Perovskite Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 39930-39939.	8.0	26
146	Simultaneous enhancement of charge generation quantum yield and carrier transport in organic solar cells. Journal of Materials Chemistry C, 2015, 3, 10799-10812.	5.5	25
147	Charge transport properties and microstructure of polythiophene/polyfluorene blends. Organic Electronics, 2009, 10, 1549-1555.	2.6	24
148	Impact of Fullerene Mixing Behavior on the Microstructure, Photophysics, and Device Performance of Polymer/Fullerene Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 29608-29618.	8.0	24
149	Coulomb Enhanced Charge Transport in Semicrystalline Polymer Semiconductors. Advanced Functional Materials, 2016, 26, 8011-8022.	14.9	24
150	Insight into thin-film stacking modes of π-expanded quinoidal molecules on charge transport property via side-chain engineering. Journal of Materials Chemistry C, 2017, 5, 1935-1943.	5.5	24
151	Critical Role of Molecular Symmetry for Charge Transport Properties: A Paradigm Learned from Quinoidal Bithieno[3,4- <i>b</i>)thiophenes. Chemistry of Materials, 2017, 29, 4999-5008.	6.7	24
152	Azido-Functionalized Thiophene as a Versatile Building Block To Cross-Link Low-Bandgap Polymers. Macromolecules, 2016, 49, 3749-3760.	4.8	23
153	Hydrogen Bonds Control Single-Chain Conformation, Crystallinity, and Electron Transport in Isoelectronic Diketopyrrolopyrrole Copolymers. Chemistry of Materials, 2021, 33, 2635-2645.	6.7	23
154	Phase Transitions and Anisotropic Thermal Expansion in High Mobility Coreâ€expanded Naphthalene Diimide Thin Film Transistors. Advanced Functional Materials, 2014, 24, 7211-7220.	14.9	22
155	Pronounced Cosolvent Effects in Polymer:Polymer Bulk Heterojunction Solar Cells with Sulfur-Rich Electron-Donating and Imide-Containing Electron-Accepting Polymers. ACS Applied Materials & Interfaces, 2015, 7, 15995-16002.	8.0	22
156	Morphological and Device Evaluation of an Amphiphilic Block Copolymer for Organic Photovoltaic Applications. Macromolecules, 2017, 50, 4942-4951.	4.8	22
157	On the manifestation of electron-electron interactions in the thermoelectric response of semicrystalline conjugated polymers with low energetic disorder. Communications Physics, 2018, 1, .	5.3	22
158	Interfacial Characteristics of Efficient Bulk Heterojunction Solar Cells Fabricated on MoO <i>_x</i> Anode Interlayers. Advanced Materials, 2016, 28, 3944-3951.	21.0	21
159	Design of New Isoindigo-Based Copolymer for Ambipolar Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2018, 10, 13774-13782.	8.0	20
160	Quinoidâ€Resonant Conducting Polymers Achieve High Electrical Conductivity over 4000 S cm ^{â^'1} for Thermoelectrics. Advanced Science, 2018, 5, 1800947.	11.2	20
161	Controlling intermolecular redox-doping of naphthalene diimides. Journal of Materials Chemistry C, 2019, 7, 4466-4474.	5.5	20
162	9-Fluorenone and 9,10-anthraquinone potential fused aromatic building blocks to synthesize electron acceptors for organic solar cells. New Journal of Chemistry, 2017, 41, 2899-2909.	2.8	19

#	Article	IF	CITATIONS
163	Diketopyrrolopyrrole based organic semiconductors with different numbers of thiophene units: symmetry tuning effect on electronic devices. New Journal of Chemistry, 2018, 42, 4017-4028.	2.8	19
164	Negative Correlation between Intermolecular vs Intramolecular Disorder in Bulk-Heterojunction Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 44576-44582.	8.0	19
165	Resonant Tender X-ray Diffraction for Disclosing the Molecular Packing of Paracrystalline Conjugated Polymer Films. Journal of the American Chemical Society, 2021, 143, 1409-1415.	13.7	19
166	Influence of dielectric-dependent interfacial widths on device performance in top-gate P(NDI2OD-T2) field-effect transistors. Applied Physics Letters, 2012, 101, 093308.	3.3	18
167	EDOT–diketopyrrolopyrrole copolymers for polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 3477-3486.	10.3	18
168	Seleniumâ€Substituted Diketopyrrolopyrrole Polymer for Highâ€Performance pâ€Type Organic Thermoelectric Materials. Angewandte Chemie, 2019, 131, 19170-19175.	2.0	18
169	The impact of tetrahedral capping groups and device processing conditions on the crystal packing, thin film features and OFET hole mobility of 7,14-bis(ethynyl)dibenzo[b,def]chrysenes. Journal of Materials Chemistry C, 2013, 1, 6299.	5.5	17
170	On the Relation between Morphology and FET Mobility of Poly(3â€alkylthiophene)s at the Polymer/SiO ₂ and Polymer/Air Interface. Advanced Functional Materials, 2014, 24, 1994-2004.	14.9	17
171	Kinetics of thermally activated triplet fusion as a function of polymer chain packing in boosting the efficiency of organic light emitting diodes. Npj Flexible Electronics, 2018, 2, .	10.7	17
172	Lyotropic Liquid Crystalline Mesophase Governs Interfacial Molecular Orientation of Conjugated Polymer Thin Films. Chemistry of Materials, 2020, 32, 6043-6054.	6.7	17
173	Imaging nanostructures in organic semiconductor films with scanning transmission X-ray spectro-microscopy. Synthetic Metals, 2012, 161, 2516-2520.	3.9	16
174	Fluorination in thieno[3,4-c]pyrrole-4,6-dione copolymers leading to electron transport, high crystallinity and end-on alignment. Journal of Materials Chemistry C, 2017, 5, 7527-7534.	5.5	16
175	Thionation of naphthalene diimide molecules: Thin-film microstructure and transistor performance. Organic Electronics, 2018, 53, 287-295.	2.6	16
176	Application of an A–A′–A-Containing Acceptor Polymer in Sequentially Deposited All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 24046-24054.	8.0	16
177	Enantiopure <i>versus</i> racemic naphthalene diimide-based n-type organic semiconductors: effect on charge transport. Journal of Materials Chemistry C, 2019, 7, 2659-2665.	5.5	16
178	Solubilizing core modifications on high-performing benzodithiophene-based molecular semiconductors and their influences on film nanostructure and photovoltaic performance. Journal of Materials Chemistry A, 2019, 7, 6312-6326.	10.3	16
179	High-Performance Unipolar n-Type Conjugated Polymers Enabled by Highly Electron-Deficient Building Blocks Containing F and CN Groups. Macromolecules, 2022, 55, 4429-4440.	4.8	16
180	Photocurrent pattern formation in polymer/methanofullerene blends imaged by near-field scanning photocurrent microscopy. Journal of Applied Physics, 2006, 99, 033502.	2.5	15

#	Article	IF	CITATIONS
181	Evolution of phase separation upon annealing and the influence on photocurrent generation in ternary blend organic solar cells. Synthetic Metals, 2014, 189, 63-68.	3.9	14
182	On the packing and the orientation of P(NDI2OD-T2) at low molecular weight. European Polymer Journal, 2014, 61, 172-185.	5.4	14
183	Vinylene-Linked Oligothiophene–Difluorobenzothiadiazole Copolymer for Transistor Applications. ACS Applied Materials & Interfaces, 2016, 8, 31154-31165.	8.0	14
184	Graphene-MWNTs composite coatings with enhanced electrical conductivity. FlatChem, 2017, 4, 33-41.	5.6	14
185	Effect of Backbone Sequence of a Naphthalene Diimide-Based Copolymer on Performance in n-Type Organic Thin-Film Transistors. ACS Applied Materials & Interfaces, 2019, 11, 35185-35192.	8.0	14
186	High performance as-cast P3HT:PCBM devices: understanding the role of molecular weight in high regioregularity P3HT. Materials Advances, 2021, 2, 2045-2054.	5.4	14
187	Synthesis and properties of pyrrolo[3,2-b]pyrrole-1,4-diones (isoDPP) derivatives. Journal of Materials Chemistry C, 2014, 2, 4276.	5.5	13
188	Metal Evaporation-Induced Degradation of Fullerene Acceptors in Polymer/Fullerene Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 2247-2254.	8.0	13
189	Regioregular Polymer Analogous Thionation of Naphthalene Diimide–Bithiophene Copolymers. Macromolecules, 2018, 51, 984-991.	4.8	13
190	Effect of regioregularity on recombination dynamics in inverted bulk heterojunction organic solar cells. Journal Physics D: Applied Physics, 2018, 51, 015501.	2.8	13
191	Direct assessment of structural order and evidence for stacking faults in layered hybrid perovskite films from X-ray scattering measurements. Journal of Materials Chemistry A, 2020, 8, 12790-12798.	10.3	13
192	The effect of the dielectric end groups on the positive bias stress stability of N2200 organic field effect transistors. APL Materials, 2021, 9, 041113.	5.1	13
193	Incorporation of Electron-Rich Indacenodithiophene Units into the Backbone of 2,6-Azulene-Based Conjugated Polymers for Proton-Responsive Materials and p-Type Polymeric Semiconductors. , 2022, 4, 392-400.		13
194	Resolving Different Physical Origins toward Crystallite Imperfection in Semiconducting Polymers: Crystallite Size vs Paracrystallinity. Journal of Physical Chemistry B, 2020, 124, 10529-10538.	2.6	12
195	Radical Anion Yield, Stability, and Electrical Conductivity of Naphthalene Diimide Copolymers <i>n</i> -Doped with Tertiary Amines. ACS Applied Polymer Materials, 2020, 2, 1954-1963.	4.4	12
196	High-mobility and low-operating voltage organic thin film transistor with epoxy based siloxane binder as the gate dielectric. Applied Physics Letters, 2015, 107, .	3.3	11
197	Highly Efficient and Balanced Charge Transport in Thieno[3,4-c]pyrrole-4,6-dione Copolymers: Dramatic Influence of Thieno[3,2-b]thiophene Comonomer on Alignment and Charge Transport. Journal of Physical Chemistry C, 2018, 122, 7565-7574.	3.1	11
198	Facile Deposition of Mesoporous PbI2 through DMF:DMSO Solvent Engineering for Sequentially Deposited Metal Halide Perovskites. ACS Applied Energy Materials, 2020, 3, 3358-3368.	5.1	11

#	Article	IF	CITATIONS
199	Origin of vertical slab orientation in blade-coated layered hybrid perovskite films revealed with in-situ synchrotron X-ray scattering. Nano Energy, 2021, 83, 105818.	16.0	11
200	Double-Cable Conjugated Polymers with Rigid Phenyl Linkers for Single-Component Organic Solar Cells. Macromolecules, 2022, 55, 2517-2523.	4.8	11
201	Chain-Assisted Charge Transport in Semicrystalline Conjugated Polymers. Journal of Physical Chemistry C, 2016, 120, 14539-14548.	3.1	10
202	The Structural Origin of Electron Injection Enhancements with Fulleropyrrolidine Interlayers. Advanced Materials Interfaces, 2016, 3, 1500852.	3.7	10
203	Control of Geminate Recombination by the Material Composition and Processing Conditions in Novel Polymer: Nonfullerene Acceptor Photovoltaic Devices. Journal of Physical Chemistry A, 2018, 122, 1253-1260.	2.5	10
204	Detecting the Onset of Molecular Reorganization in Conjugated Polymer Thin Films Using an Easily Accessible Optical Method. Macromolecules, 2019, 52, 4646-4654.	4.8	10
205	A Structurally Simple but Highâ€Performing Donor–Acceptor Polymer for Fieldâ€Effect Transistor Applications. Advanced Electronic Materials, 2020, 6, 2000490.	5.1	10
206	Dielectric Constant Engineering of Organic Semiconductors: Effect of Planarity and Conjugation Length. Advanced Functional Materials, 2022, 32, 2104259.	14.9	10
207	Enhanced Nâ€Type Doping of a Naphthalene Diimide Based Copolymer by Modification of the Donor Unit. Advanced Electronic Materials, 2021, 7, 2100407.	5.1	10
208	Design of experiment optimization of aligned polymer thermoelectrics doped by ion-exchange. Applied Physics Letters, 2021, 119, .	3.3	10
209	Unexpected Enhancement of Molecular n-Doping Efficiency in Polymer Thin Films by a Degradation Product. ACS Applied Energy Materials, 2022, 5, 2421-2429.	5.1	10
210	Directional Carrier Polarity Tunability in Ambipolar Organic Transistors Based on Diketopyrrolopyrrole and Bithiophene Imide Dual-Acceptor Semiconducting Polymers. Chemistry of Materials, 2022, 34, 3140-3151.	6.7	10
211	Influence of side-chain length and geometry on the thermal expansion behavior and polymorphism of naphthalene diimide-based thin films. Physical Review Materials, 2019, 3, .	2.4	9
212	Achieving High-Efficiency Organic Photovoltaics from a New Completely Amorphous Donor Polymer. Chemistry of Materials, 2022, 34, 5103-5115.	6.7	9
213	Screening for artifacts in near-field scanning photocurrent microscopy images of polymer solar cells. Synthetic Metals, 2005, 153, 85-88.	3.9	8
214	Rational Design of Donor–Acceptor Based Semiconducting Copolymers with High Dielectric Constants. Journal of Physical Chemistry C, 2021, 125, 6886-6896.	3.1	8
215	Anisotropic Resonant X-ray Diffraction of a Conjugated Polymer at the Sulfur K-Edge. Journal of Physical Chemistry Letters, 2021, 12, 3762-3766.	4.6	8
216	Morphology and Charge Transport Properties of P(NDI2OD-T2)/Polystyrene Blends. Macromolecules, 2021, 54, 11134-11146.	4.8	8

#	Article	IF	CITATIONS
217	Decoupling order and conductivity in doped conducting polymers. Physical Chemistry Chemical Physics, 2016, 18, 19397-19404.	2.8	7
218	Benzoyl side-chains push the open-circuit voltage of PCDTBT/PCBM solar cells beyond 1ÂV. Organic Electronics, 2017, 49, 142-151.	2.6	7
219	Influence of fluorination on the microstructure and performance of diketopyrrolopyrroleâ€based polymer solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 49-59.	2.1	7
220	Correlation of Nanomorphology with Structural and Spectroscopic Studies in Organic Solar Cells. ACS Applied Nano Materials, 2020, 3, 11080-11089.	5.0	7
221	Length Effect of Alkyl Linkers on the Crystalline Transition in Naphthalene Diimide-Based Double-Cable Conjugated Polymers. Macromolecules, 2022, 55, 5188-5196.	4.8	7
222	Enhancement of polymer electronics via surface states on highly doped polymeric anodes. Journal Physics D: Applied Physics, 2004, 37, 165-170.	2.8	6
223	Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications. Applied Physics Letters, 2018, 113, .	3.3	6
224	Incorporation of Î ³ -butyrolactone (GBL) dramatically lowers the phase transition temperature of formamidinium-based metal halide perovskites. Chemical Communications, 2019, 55, 11743-11746.	4.1	6
225	From Homochiral Assembly to Heterochiral Assembly: A Leap in Charge Transport Properties of Binaphthol-Based Axially Chiral Materials. Langmuir, 2019, 35, 6188-6195.	3.5	6
226	Role of Molecular and Interchain Ordering in the Formation of a δ-Hole-Transporting Layer in Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 3806-3814.	8.0	6
227	Origin of Open ircuit Voltage Turnover in Organic Solar Cells at Low Temperature. Solar Rrl, 2020, 4, 2000375.	5.8	6
228	A NIST facility for resonant soft x-ray scattering measuring nano-scale soft matter structure at NSLS-II. Journal of Physics Condensed Matter, 2021, 33, 164001.	1.8	6
229	The photovoltaic properties of phenyl-capped thiophene oligomers. Current Applied Physics, 2004, 4, 335-338.	2.4	5
230	Photoenhanced injection currents in organic solar cells. Applied Physics Letters, 2004, 85, 1042-1044.	3.3	5
231	Investigation of the effect of microstructural changes on thermal transport in semicrystalline polymer semiconductors. APL Materials, 2019, 7, 081118.	5.1	5
232	Boosted photovoltaic performance of indenothiophene-based molecular acceptor <i>via</i> fusing a thiophene. Journal of Materials Chemistry C, 2020, 8, 630-636.	5.5	5
233	Influence of synthetic pathway, molecular weight and side chains on properties of indacenodithiophene-benzothiadiazole copolymers made by direct arylation polycondensation. Journal of Materials Chemistry C, 2021, 9, 4597-4606.	5.5	5
234	Drastic Enhancement of X-ray Scattering Contrast between Amorphous and Crystalline Phases of Poly(3-hexylthiophene) at the Sulfur K-Edge. , 0, , 764-769.		5

#	Article	IF	CITATIONS
235	Introduction to the Issue on Organic Nanophotonics. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 3-5.	2.9	4
236	A Family of Heterocyclic Naphthalene Diimide (NDI) Analogues: Comparing Parent Isoquinoline Diimides and Phthalazine Diimides with NDI. ChemPlusChem, 2019, 84, 1638-1642.	2.8	4
237	Effect of Thionation on the Performance of PNDIT2-Based Polymer Solar Cells. Journal of Physical Chemistry C, 2019, 123, 12062-12072.	3.1	4
238	Understanding the effect of thionation on naphthalene diimide using first-principles predictions of near-edge x-ray absorption fine structure spectra. Journal of Chemical Physics, 2019, 150, 104302.	3.0	4
239	A structural study of p-type A–D–A oligothiophenes: effects of regioregular alkyl sidechains on annealing processes and photovoltaic performances. Journal of Materials Chemistry C, 2020, 8, 567-580.	5.5	4
240	Impact of Polymer Molecular Weight on Polymeric Photodiodes. Advanced Optical Materials, 2022, 10, 2101890.	7.3	4
241	Multi-Edge Resonant Tender X-ray Diffraction for Probing the Crystalline Packing of Conjugated Polymers. Macromolecules, 2022, 55, 4733-4741.	4.8	4
242	Single Atom Selenium Substitutionâ€Mediated Pâ€Type Doping in Polythiophenes toward Highâ€Performance Organic Electronics and Thermoelectrics. Advanced Electronic Materials, 2022, 8, .	5.1	4
243	Residual solvent additive enables the nanostructuring of PTB7-Th:PC71BM solar cells via soft lithography. AIP Advances, 2019, 9, .	1.3	3
244	Remarkable wettability of highly dispersive rGO ink on multiple substrates independent of deposition techniques. FlatChem, 2019, 16, 100110.	5.6	3
245	Revealing the Sideâ€Chainâ€Dependent Ordering Transition of Highly Crystalline Doubleâ€Cable Conjugated Polymers. Angewandte Chemie, 2021, 133, 25703-25711.	2.0	3
246	Atropisomeric Conjugated Diimides: A Class of Thermally Responsive Organic Semiconductors. , 2022, 4, 363-369.		3
247	Resolving the backbone tilt of crystalline poly(3-hexylthiophene) with resonant tender X-ray diffraction. Materials Horizons, 2022, 9, 1649-1657.	12.2	3
248	Reassessing the Significance of Reduced Aggregation and Crystallinity of Naphthalene Diimide-Based Copolymer Acceptors in All-Polymer Solar Cells. ACS Applied Polymer Materials, 2022, 4, 3270-3282.	4.4	3
249	Polymer Solar Cells: Highâ€Performance Allâ€Polymer Solar Cells Enabled by nâ€Type Polymers with an Ultranarrow Bandgap Down to 1.28 eV (Adv. Mater. 30/2020). Advanced Materials, 2020, 32, 2070226.	21.0	2
250	Vinylene Flanked Naphtho[1,2- <i>c</i> :5,6- <i>c</i> ′]bis[1,2,5]thiadiazole Polymer for Low-Crystallinity Ambipolar Transistors. Macromolecules, 2022, 55, 331-337.	4.8	2
251	Light induced quasi-Fermi level splitting in molecular semiconductor alloys. Materials Advances, 0, , .	5.4	2
252	Impact of pendent naphthalenedimide content in random double-cable conjugated polymers on their microstructures and photovoltaic performance. Polymer, 2022, 253, 125020.	3.8	2

#	Article	IF	CITATIONS
253	Organogels from Diketopyrrolopyrrole Copolymer Ionene/Polythiophene Blends Exhibit Ground-State Single Electron Transfer in the Solid State. Macromolecules, 2022, 55, 4979-4994.	4.8	2
254	Chain Alignment and Charge Transport Anisotropy in Blade-Coated P(NDI2OD-T2)/PS Blend Films. ACS Applied Polymer Materials, 2022, 4, 5501-5514.	4.4	2
255	Titelbild: Seleniumâ€Substituted Diketopyrrolopyrrole Polymer for Highâ€Performance pâ€Type Organic Thermoelectric Materials (Angew. Chem. 52/2019). Angewandte Chemie, 2019, 131, 18893-18893.	2.0	1
256	All-Inkjet-Printed, All-Air-Processed Solar Cells. , 2014, 4, 1400432.		1
257	Sensors: A Highly Sensitive Diketopyrrolopyrroleâ€Based Ambipolar Transistor for Selective Detection and Discrimination of Xylene Isomers (Adv. Mater. 21/2016). Advanced Materials, 2016, 28, 4163-4163.	21.0	0
258	Organic Electronics: Pursuing Highâ€Mobility nâ€Type Organic Semiconductors by Combination of "Moleculeâ€Framework―and "Sideâ€Chain―Engineering (Adv. Mater. 38/2016). Advanced Materials, 2 8455-8455.	0 261, 62 8,	0
259	9,9′-Bifluorenylidene-diketopyrrolopyrrole donors for non-polymeric solution processed solar cells. Synthetic Metals, 2019, 250, 79-87.	3.9	0
260	Diffractive X-ray waveguiding reveals orthogonal crystalline stratification in conjugated polymer thin films. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, a219-a219.	0.1	0
261	An iminostilbene functionalized benzimidazole derivative for improved solution n-doping of P(NDI20D-T2). , 0, , .		0
262	Doubleâ€Cable Conjugated Polymers with Pendent Nearâ€Infrared Electron Acceptors for Singleâ€Component Organic Solar Cells. Angewandte Chemie, 0, , .	2.0	0