
Prem S Bindraban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/106253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving agricultural water productivity: Between optimism and caution. Agricultural Water Management, 2010, 97, 528-535.	5.6	610
2	A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	501
3	Fortification of micronutrients for efficient agronomic production: a review. Agronomy for Sustainable Development, 2016, 36, 1.	5.3	306
4	Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biology and Fertility of Soils, 2015, 51, 897-911.	4.3	297
5	Nanofertilizers: New Products for the Industry?. Journal of Agricultural and Food Chemistry, 2018, 66, 6462-6473.	5.2	297
6	Effects of Nutrient Antagonism and Synergism on Yield and Fertilizer Use Efficiency. Communications in Soil Science and Plant Analysis, 2017, 48, 1895-1920.	1.4	277
7	Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biology and Fertility of Soils, 2020, 56, 299-317.	4.3	251
8	Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agriculture, Ecosystems and Environment, 2010, 137, 47-58.	5.3	207
9	Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Science of the Total Environment, 2019, 688, 926-934.	8.0	196
10	Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agronomy for Sustainable Development, 2017, 37, 1.	5.3	152
11	Assessing the impact of soil degradation on food production. Current Opinion in Environmental Sustainability, 2012, 4, 478-488.	6.3	142
12	Facile Coating of Urea With Low-Dose ZnO Nanoparticles Promotes Wheat Performance and Enhances Zn Uptake Under Drought Stress. Frontiers in Plant Science, 2020, 11, 168.	3.6	120
13	Does Morphological and Anatomical Plasticity during the Vegetative Stage Make Wheat More Tolerant of Water Deficit Stress Than Rice? Â. Plant Physiology, 2015, 167, 1389-1401.	4.8	111
14	Interactive effects of drought, organic fertilizer, and zinc oxide nanoscale and bulk particles on wheat performance and grain nutrient accumulation. Science of the Total Environment, 2020, 722, 137808.	8.0	104
15	Effects of Manganese Nanoparticle Exposure on Nutrient Acquisition in Wheat (Triticum aestivum L.). Agronomy, 2018, 8, 158.	3.0	91
16	A Generic Equation for Nitrogen-limited Leaf Area Index and its Application in Crop Growth Models for Predicting Leaf Senescence. Annals of Botany, 2000, 85, 579-585.	2.9	67
17	Can large-scale biofuels production be sustainable by 2020?. Agricultural Systems, 2009, 101, 197-199.	6.1	65
18	Addition-omission of zinc, copper, and boron nano and bulk oxide particles demonstrate element and size -specific response of soybean to micronutrients exposure. Science of the Total Environment, 2019, 665, 606-616.	8.0	62

Prem S Bindraban

#	Article	IF	CITATIONS
19	Exposure to Weathered and Fresh Nanoparticle and Ionic Zn in Soil Promotes Grain Yield and Modulates Nutrient Acquisition in Wheat (<i>Triticum aestivum</i> L.). Journal of Agricultural and Food Chemistry, 2018, 66, 9645-9656.	5.2	56
20	Safeguarding human and planetary health demands a fertilizer sector transformation. Plants People Planet, 2020, 2, 302-309.	3.3	31
21	Unlocking the multiple public good services from balanced fertilizers. Food Security, 2018, 10, 273-285.	5.3	30
22	Identifying factors that determine kernel number in wheat. Field Crops Research, 1998, 58, 223-234.	5.1	28
23	Modeling the productivity of energy crops in different agro-ecological environments. Biomass and Bioenergy, 2012, 46, 618-633.	5.7	22
24	Foliar application of organic and inorganic iron formulation induces differential detoxification response to improve growth and biofortification in soybean. Plant Physiology Reports, 2019, 24, 119-128.	1.5	20
25	Megatrends in agriculture – Views for discontinuities in past and future developments. Global Food Security, 2012, 1, 99-105.	8.1	19
26	Foliar fertilization: possible routes of iron transport from leaf surface to cell organelles. Archives of Agronomy and Soil Science, 2020, 66, 279-300.	2.6	19
27	Foliar Application of Iron Fortified Bacteriosiderophore Improves Growth and Grain Fe Concentration in Wheat and Soybean. Indian Journal of Microbiology, 2019, 59, 344-350.	2.7	17
28	Making More Food Available: Promoting Sustainable Agricultural Production. Journal of Integrative Agriculture, 2012, 11, 1-8.	3.5	14
29	Assessing water management effects on spring wheat yield in the Canadian Prairies using DSSAT wheat models. Agricultural Water Management, 2021, 244, 106591.	5.6	13
30	Rice yield and economic response to micronutrient application in Tanzania. Field Crops Research, 2021, 270, 108201.	5.1	8
31	Characterization of farmers and the effect of fertilization on maize yields in the Guinea Savannah, Sudan Savannah, and Transitional agroecological zones of Ghana. EFB Bioeconomy Journal, 2021, 1, 100019.	2.4	7
32	The Need for Agro-Ecological Intelligence to Preparing Agriculture for Climate Change. Journal of Crop Improvement, 2012, 26, 301-328.	1.7	3