
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1062321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronically Coupled TTA-UC Solar Cells. , 2022, , 209-237.		Ο
2	Inhibited interlayer electron transfer in metal ion linked multilayers on mesoporous metal oxide films. Journal of Photochemistry and Photobiology, 2022, 9, 100088.	2.5	4
3	Harnessing near-infrared light <i>via</i> S ₀ to T ₁ sensitizer excitation in a molecular photon upconversion solar cell. Journal of Materials Chemistry C, 2022, 10, 4947-4954.	5.5	9
4	Enabling Lower Energy Light Harvesting in Stilbene-Based Photomechanical Polymers via Triplet Sensitization. ACS Applied Polymer Materials, 2022, 4, 4081-4086.	4.4	5
5	A Series of Green Light Absorbing Organic Photosensitizers Capable of Oxidative Quenching Photocatalysis. ChemPhotoChem, 2021, 5, 51-57.	3.0	7
6	Highly Efficient and Stable Perovskite Solar Cells Enabled by Lowâ€Cost Industrial Organic Pigment Coating. Angewandte Chemie, 2021, 133, 2515-2522.	2.0	11
7	Highly Efficient and Stable Perovskite Solar Cells Enabled by Lowâ€Cost Industrial Organic Pigment Coating. Angewandte Chemie - International Edition, 2021, 60, 2485-2492.	13.8	66
8	Using Classical Test Theory and Rasch Modeling to Improve General Chemistry Exams on a Per Instructor Basis. Journal of Chemical Education, 2021, 98, 1529-1538.	2.3	5
9	Excited state proton transfer dye with an emission quantum yield up to 60% upon Zn2+ coordination. Journal of Photochemistry and Photobiology, 2021, 6, 100029.	2.5	0
10	Harnessing Sunlight via Molecular Photon Upconversion. ACS Applied Materials & Interfaces, 2021, 13, 32601-32605.	8.0	33
11	Band Edge Control of Quasiâ€2D Metal Halide Perovskites for Blue Lightâ€Emitting Diodes with Enhanced Performance. Advanced Functional Materials, 2021, 31, 2103299.	14.9	28
12	Synthesis of multi-substituted pyridines from ylidenemalononitriles and their emission properties. Organic and Biomolecular Chemistry, 2021, 19, 1991-1999.	2.8	3
13	Facile Formation of 2D–3D Heterojunctions on Perovskite Thin Film Surfaces for Efficient Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 1159-1168.	8.0	55
14	Metal ion linked multilayers on mesoporous substrates: Energy/electron transfer, photon upconversion, and more. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 390, 112291.	3.9	13
15	CdSe Quantum Dot Sensitized Molecular Photon Upconversion Solar Cells. ACS Applied Energy Materials, 2020, 3, 29-37.	5.1	27
16	Compression of curium pyrrolidine-dithiocarbamate enhances covalency. Nature, 2020, 583, 396-399.	27.8	34
17	Role of Metal Ion-Linked Multilayer Thickness and Substrate Porosity in Surface Loading, Diffusion, and Solar Energy Conversion. ACS Applied Materials & Interfaces, 2020, 12, 38003-38011.	8.0	6
18	Conversion of Trivalent Uranium Anilido to Tetravalent Uranium Imido Species via Oxidative Deprotonation. Inorganic Chemistry, 2020, 59, 11910-11914.	4.0	13

#	Article	IF	CITATIONS
19	Catalyst free removal of trithiocarbonate RAFT CTAs from poly(vinylpyridine)s using tris(trimethylsilyl)silane and light. Polymer Chemistry, 2020, 11, 5962-5968.	3.9	5
20	Increasing Scope of Clickable Fluorophores: Electrophilic Substitution of Ylidenemalononitriles. Journal of Organic Chemistry, 2020, 85, 11822-11834.	3.2	2
21	Examining the Influence of Bilayer Structure on Energy Transfer and Molecular Photon Upconversion in Metal Ion Linked Multilayers. Journal of Physical Chemistry C, 2020, 124, 23597-23610.	3.1	7
22	Phenalenannulations: Threeâ€Point Double Annulation Reactions that Convert Benzenes into Pyrenes. Angewandte Chemie - International Edition, 2020, 59, 14352-14357.	13.8	15
23	On the Quantum Yield of Photon Upconversion via Triplet–Triplet Annihilation. ACS Energy Letters, 2020, 5, 2322-2326.	17.4	137
24	Twofold π-Extension of Polyarenes via Double and Triple Radical Alkyne <i>peri</i> -Annulations: Radical Cascades Converging on the Same Aromatic Core. Journal of the American Chemical Society, 2020, 142, 8352-8366.	13.7	28
25	Phenalenannulations: Threeâ€Point Double Annulation Reactions that Convert Benzenes into Pyrenes. Angewandte Chemie, 2020, 132, 14458-14463.	2.0	2
26	Bis-Cyclometalated Iridium Complexes Containing 4,4′-Bis(phosphonomethyl)-2,2′-bipyridine Ligands: Photophysics, Electrochemistry, and High-Voltage Dye-Sensitized Solar Cells. Inorganic Chemistry, 2020, 59, 6351-6358.	4.0	18
27	Antiferroelectric Phase Transition in a Proton-Transfer Salt of Squaric Acid and 2,3-Dimethylpyrazine. Journal of the American Chemical Society, 2019, 141, 16279-16287.	13.7	6
28	Enantioenrichment of racemic BINOL by way of excited state proton transfer. Chemical Communications, 2019, 55, 1263-1266.	4.1	10
29	Solid State Multicolor Emission in Substitutional Solid Solutions of Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11298-11303.	13.7	79
30	Singlet Sensitization-Enhanced Upconversion Solar Cells via Self-Assembled Trilayers. ACS Energy Letters, 2019, 4, 1458-1463.	17.4	48
31	Chirality and Excited State Proton Transfer: From Sensing to Asymmetric Synthesis. ChemPhotoChem, 2019, 3, 580.	3.0	9
32	Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices. Nature Communications, 2019, 10, 695.	12.8	156
33	High-Pressure Studies of Cesium Uranyl Chloride. Inorganic Chemistry, 2019, 58, 228-233.	4.0	5
34	Influence of Dye-Coordinated Metal Ions on Electron Transfer Dynamics at Dye–Semiconductor Interfaces. ACS Applied Energy Materials, 2019, 2, 29-36.	5.1	9
35	Light Emitting Diodes Based on Inorganic Composite Halide Perovskites. Advanced Functional Materials, 2019, 29, 1807345.	14.9	65
36	Elucidating the Role of the Metal Linking Ion on the Excited State Dynamics of Self-Assembled Bilayers. Journal of Physical Chemistry C, 2018, 122, 9835-9842.	3.1	13

#	Article	IF	CITATIONS
37	Writing a Review Article: A Graduate Level Writing Class. Journal of Chemical Education, 2018, 95, 810-816.	2.3	15
38	Multimolecular assemblies on high surface area metal oxides and their role in interfacial energy and electron transfer. Chemical Society Reviews, 2018, 47, 104-148.	38.1	78
39	Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chemical Science, 2018, 9, 586-593.	7.4	467
40	Diphenylisobenzofuran Bound to Nanocrystalline Metal Oxides: Excimer Formation, Singlet Fission, Electron Injection, and Low Energy Sensitization. Journal of Physical Chemistry C, 2018, 122, 28478-28490.	3.1	18
41	Examination of Structure and Bonding in 10-Coordinate Europium and Americium Terpyridyl Complexes. Inorganic Chemistry, 2018, 57, 12969-12975.	4.0	22
42	Molecular Photon Upconversion Solar Cells Using Multilayer Assemblies: Progress and Prospects. Journal of Physical Chemistry Letters, 2018, 9, 5810-5821.	4.6	76
43	Examining the role of acceptor molecule structure in self-assembled bilayers: surface loading, stability, energy transfer, and upconverted emission. Physical Chemistry Chemical Physics, 2018, 20, 20513-20524.	2.8	24
44	Wavelength selective separation of metal ions using electroactive ligands. Chemical Communications, 2018, 54, 7507-7510.	4.1	1
45	Metal ion mediated electron transfer at dye–semiconductor interfaces. Physical Chemistry Chemical Physics, 2017, 19, 2679-2682.	2.8	19
46	Harnessing molecular photon upconversion at sub-solar irradiance using dual sensitized self-assembled trilayers. Journal of Materials Chemistry A, 2017, 5, 11652-11660.	10.3	59
47	Ylidenemalononitrile enamine-coated media as fluorescent "turn-on―probes for volatile primary amines. Photochemical and Photobiological Sciences, 2017, 16, 455-458.	2.9	5
48	Systematic variation of the optical bandgap in titanium based isoreticular metal–organic frameworks for photocatalytic reduction of CO ₂ under blue light. Journal of Materials Chemistry A, 2017, 5, 11854-11863.	10.3	102
49	Twisted Cycloalkynes and Remote Activation of "Click―Reactivity. CheM, 2017, 3, 629-640.	11.7	33
50	Coupling N–H Deprotonation, C–H Activation, and Oxidation: Metal-Free C(sp ³)–H Aminations with Unprotected Anilines. Journal of the American Chemical Society, 2017, 139, 16210-16221.	13.7	78
51	Self-Assembled Bilayers on Nanocrystalline Metal Oxides: Exploring the Non-Innocent Nature of the Linking Ions. Langmuir, 2017, 33, 9609-9619.	3.5	15
52	Increasing the Open-Circuit Voltage of Dye-Sensitized Solar Cells via Metal-Ion Coordination. Inorganic Chemistry, 2017, 56, 11168-11175.	4.0	36
53	Harnessing Molecular Photon Upconversion in a Solar Cell at Sub-solar Irradiance: Role of the Redox Mediator. Journal of the American Chemical Society, 2017, 139, 10988-10991.	13.7	83
54	Electronic Structure and Properties of Berkelium Iodates. Journal of the American Chemical Society, 2017, 139, 13361-13375.	13.7	25

#	Article	IF	CITATIONS
55	Elucidating the Energy- and Electron-Transfer Dynamics of Photon Upconversion in Self-Assembled Bilayers. Journal of Physical Chemistry C, 2017, 121, 19690-19698.	3.1	31
56	Composite Perovskites of Cesium Lead Bromide for Optimized Photoluminescence. Journal of Physical Chemistry Letters, 2017, 8, 3266-3271.	4.6	108
57	Influence of meta- and para-phosphonated diphenylanthracene on photon upconversion in self-assembled bilayers. Journal of Photonics for Energy, 2017, 8, 1.	1.3	10
58	Bright Lightâ€Emitting Diodes Based on Organometal Halide Perovskite Nanoplatelets. Advanced Materials, 2016, 28, 305-311.	21.0	463
59	Structural, electrochemical and photophysical properties of an exocyclic di-ruthenium complex and its application as a photosensitizer. Dalton Transactions, 2016, 45, 9601-9607.	3.3	6
60	Integrated Photon Upconversion Solar Cell via Molecular Self-Assembled Bilayers. ACS Energy Letters, 2016, 1, 3-8.	17.4	86
61	Double C–H amination by consecutive SET oxidations. Chemical Communications, 2016, 52, 7138-7141.	4.1	35
62	Energy and Electron Transfer Cascade in Self-Assembled Bilayer Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 28633-28640.	8.0	47
63	Enantioselective Protonation of Silyl Enol Ether Using Excited State Proton Transfer Dyes. Organic Letters, 2016, 18, 5416-5419.	4.6	36
64	Characterization of berkelium(III) dipicolinate and borate compounds in solution and the solid state. Science, 2016, 353, .	12.6	86
65	Enhanced Optical and Electrical Properties of Polymerâ€Assisted Allâ€Inorganic Perovskites for Lightâ€Emitting Diodes. Advanced Materials, 2016, 28, 8983-8989.	21.0	326
66	Fully Printed Halide Perovskite Light-Emitting Diodes with Silver Nanowire Electrodes. ACS Nano, 2016, 10, 1795-1801.	14.6	261
67	Protonation of silylenol ether via excited state proton transfer catalysis. Chemical Communications, 2016, 52, 1350-1353.	4.1	30
68	Spontaneous Partitioning of Californium from Curium: Curious Cases from the Crystallization of Curium Coordination Complexes. Inorganic Chemistry, 2015, 54, 11399-11404.	4.0	32
69	Electrochemical Instability of Phosphonate-Derivatized, Ruthenium(III) Polypyridyl Complexes on Metal Oxide Surfaces. ACS Applied Materials & Interfaces, 2015, 7, 9554-9562.	8.0	72
70	Modulating Electron Transfer Dynamics at Dye–Semiconductor Interfaces via Self-Assembled Bilayers. Journal of Physical Chemistry C, 2015, 119, 3502-3508.	3.1	35
71	Alkenes as Alkyne Equivalents in Radical Cascades Terminated by Fragmentations: Overcoming Stereoelectronic Restrictions on Ring Expansions for the Preparation of Expanded Polyaromatics. Journal of the American Chemical Society, 2015, 137, 6335-6349.	13.7	88
72	Photon Upconversion and Photocurrent Generation via Self-Assembly at Organic–Inorganic Interfaces. Journal of Physical Chemistry Letters, 2015, 6, 4510-4517.	4.6	70

#	Article	IF	CITATIONS
73	Traceless Directing Groups in Radical Cascades: From Oligoalkynes to Fused Helicenes without Tethered Initiators. Journal of the American Chemical Society, 2015, 137, 1165-1180.	13.7	94
74	Inhibiting Interfacial Recombination Events in Dye-Sensitized Solar Cells using Self-Assembled Bilayers. ACS Applied Materials & Interfaces, 2015, 7, 27730-27734.	8.0	33
75	Ylidenemalononitrile Enamines as Fluorescent "Turn-On―Indicators for Primary Amines. Journal of the American Chemical Society, 2014, 136, 15493-15496.	13.7	79
76	Photophysical Characterization of a Chromophore/Water Oxidation Catalyst Containing a Layer-by-Layer Assembly on Nanocrystalline TiO ₂ Using Ultrafast Spectroscopy. Journal of Physical Chemistry A, 2014, 118, 10301-10308.	2.5	45
77	Synthesis and photophysical characterization of porphyrin and porphyrin–Ru(ii) polypyridyl chromophore–catalyst assemblies on mesoporous metal oxides. Chemical Science, 2014, 5, 3115.	7.4	56
78	Stabilizing chromophore binding on TiO ₂ for long-term stability of dye-sensitized solar cells using multicomponent atomic layer deposition. Physical Chemistry Chemical Physics, 2014, 16, 8615-8622.	2.8	34
79	Water Oxidation by an Electropolymerized Catalyst on Derivatized Mesoporous Metal Oxide Electrodes. Journal of the American Chemical Society, 2014, 136, 6578-6581.	13.7	108
80	Stabilizing molecular sensitizers in aqueous environs. Nano Energy, 2013, 2, 1067-1069.	16.0	16
81	Stabilizing Small Molecules on Metal Oxide Surfaces Using Atomic Layer Deposition. Nano Letters, 2013, 13, 4802-4809.	9.1	85
82	Stabilization of a Ruthenium(II) Polypyridyl Dye on Nanocrystalline TiO ₂ by an Electropolymerized Overlayer. Journal of the American Chemical Society, 2013, 135, 15450-15458.	13.7	84
83	Spectroscopy and Dynamics of Phosphonate-Derivatized Ruthenium Complexes on TiO ₂ . Journal of Physical Chemistry C, 2013, 117, 812-824.	3.1	43
84	A Sensitized Nb ₂ O ₅ Photoanode for Hydrogen Production in a Dye-Sensitized Photoelectrosynthesis Cell. Chemistry of Materials, 2013, 25, 122-131.	6.7	66
85	Electron transfer dynamics of peptideâ€derivatized Ru ^{II} â€polypyridyl complexes on nanocrystalline metal oxide films. Biopolymers, 2013, 100, 25-37.	2.4	7
86	Interfacial Energy Conversion in Ru ^{II} Polypyridyl-Derivatized Oligoproline Assemblies on TiO ₂ . Journal of the American Chemical Society, 2013, 135, 5250-5253.	13.7	44
87	Solution-Processed, Antimony-Doped Tin Oxide Colloid Films Enable High-Performance TiO ₂ Photoanodes for Water Splitting. Nano Letters, 2013, 13, 1481-1488.	9.1	79
88	Visualization of cation diffusion at the TiO2 interface in dye sensitized photoelectrosynthesis cells (DSPEC). Energy and Environmental Science, 2013, 6, 1240.	30.8	25
89	Stabilization of [Ru(bpy) ₂ (4,4′-(PO ₃ H ₂)bpy)] ²⁺ on Mesoporous TiO ₂ with Atomic Layer Deposition of Al ₂ O ₃ . Chemistry of Materials, 2013, 25, 3-5.	6.7	101
90	Accumulation of Multiple Oxidative Equivalents at a Single Site by Cross-Surface Electron Transfer on TiO ₂ . Journal of the American Chemical Society, 2013, 135, 11587-11594.	13.7	68

#	Article	IF	CITATIONS
91	Selfâ€Assembled Bilayer Films of Ruthenium(II)/Polypyridyl Complexes through Layerâ€by‣ayer Deposition on Nanostructured Metal Oxides. Angewandte Chemie - International Edition, 2012, 51, 12782-12785.	13.8	118
92	Increasing Photocurrents in Dye Sensitized Solar Cells with Tantalum-Doped Titanium Oxide Photoanodes Obtained by Laser Ablation. ACS Applied Materials & Interfaces, 2012, 4, 4566-4570.	8.0	30
93	Photostability of Phosphonate-Derivatized, Ru ^{II} Polypyridyl Complexes on Metal Oxide Surfaces. ACS Applied Materials & Interfaces, 2012, 4, 1462-1469.	8.0	157
94	Structure–Property Relationships in Phosphonate-Derivatized, Ru ^{II} Polypyridyl Dyes on Metal Oxide Surfaces in an Aqueous Environment. Journal of Physical Chemistry C, 2012, 116, 14837-14847.	3.1	156
95	Sensitized Photodecomposition of Organic Bisphosphonates By Singlet Oxygen. Journal of the American Chemical Society, 2012, 134, 16975-16978.	13.7	10
96	Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons. Journal of Organic Chemistry, 2012, 77, 143-159.	3.2	72
97	Interfacial Dynamics and Solar Fuel Formation in Dyeâ€Sensitized Photoelectrosynthesis Cells. ChemPhysChem, 2012, 13, 2882-2890.	2.1	41
98	Photophysical and electrochemical properties of 1,3-bis(2-pyridylimino)isoindolate platinum(ii) derivatives. Dalton Transactions, 2012, 41, 8648.	3.3	19
99	Photoinduced Stepwise Oxidative Activation of a Chromophore–Catalyst Assembly on TiO ₂ . Journal of Physical Chemistry Letters, 2011, 2, 1808-1813.	4.6	93
100	Substituted 1,3-Bis(imino)isoindole Diols: A New Class of Proton Transfer Dyes. Organic Letters, 2011, 13, 1598-1601.	4.6	32
101	Interfacial Electron Transfer Dynamics for [Ru(bpy) ₂ ((4,4′-PO ₃ H ₂) ₂ bpy)] ²⁺ Sensitized TiO ₂ in a Dye-Sensitized Photoelectrosynthesis Cell: Factors Influencing Efficiency and Dynamics. Journal of Physical Chemistry C, 2011, 115, 7081-7091.	3.1	56
102	Efficient high surface area vertically aligned metal oxide nanostructures for dye-sensitized photoanodes by pulsed laser deposition. , 2011, , .		1
103	Use of additives in porphyrin-tape/C60 near-infrared photodetectors. Organic Electronics, 2011, 12, 869-873.	2.6	49
104	Porphyrinâ€Tape/C ₆₀ Organic Photodetectors with 6.5% External Quantum Efficiency in the Near Infrared. Advanced Materials, 2010, 22, 2780-2783.	21.0	137
105	Fused Pyrene–Diporphyrins: Shifting Nearâ€Infrared Absorption to 1.5 μm and Beyond. Angewandte Chem - International Edition, 2010, 49, 5523-5526.	lie 13.8	87
106	A Paradigm for Blue- or Red-Shifted Absorption of Small Molecules Depending on the Site of l̃€-Extension. Journal of the American Chemical Society, 2010, 132, 16247-16255.	13.7	96
107	Efficient Dipyrrin-Centered Phosphorescence at Room Temperature from Bis-Cyclometalated Iridium(III) Dipyrrinato Complexes. Inorganic Chemistry, 2010, 49, 6077-6084.	4.0	142
108	Photophysics of Pt-porphyrin electrophosphorescent devices emitting in the near infrared. Applied Physics Letters, 2007, 90, 213503.	3.3	87

#	Article	IF	CITATIONS
109	Highly Efficient, Near-Infrared Electrophosphorescence from a Pt–Metalloporphyrin Complex. Angewandte Chemie - International Edition, 2007, 46, 1109-1112.	13.8	246
110	Reversible Repositioning of Zinc Atoms within Single Crystals of a Zinc Polycarboxylate with an Open-Framework Structure. Journal of the American Chemical Society, 2004, 126, 10502-10503.	13.7	121
111	Balancing the interplay between ligand ejection and therapeutic window light absorption in ruthenium polypyridyl complexes. Dalton Transactions, 0, , .	3.3	1