Olivier Lame

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10621243/publications.pdf Version: 2024-02-01

OLIVIED LAME

#	Article	IF	CITATIONS
1	Enhanced ductility in high performance polyamides due to strain-induced phase transitions. Polymer, 2022, 238, 124424.	3.8	3
2	The correlation between the mixed-mode oligo-cyclic loading induced mechanical and microstructure changes in HDPE. Polymer, 2021, 224, 123706.	3.8	7
3	Characterization of the spherulitic deformation in equatorial region and cavitation in HDPE materials submitted to mixed-mode oligo-cyclic tensile loading. Polymer Testing, 2021, 99, 107208.	4.8	11
4	Anisotropic deformation and failure behaviors of the necked HDPE materials induced by oligo-cyclic loading. Polymer, 2021, 234, 124232.	3.8	6
5	Influence of nanoceramic interlayer on polymer consolidation during cold-spray coating formation. Journal of Materials Processing Technology, 2019, 273, 116254.	6.3	6
6	Disentangling and Lamellar Thickening of Linear Polymers during Crystallization: Simulation of Bimodal and Unimodal Molecular Weight Distribution Systems. ACS Nano, 2019, 13, 11310-11319.	14.6	33
7	1D strain rate-dependent constitutive model of UHMWPE: From crystalline network to fibrillar structure behavior. Mechanics of Materials, 2019, 137, 103129.	3.2	16
8	Crystallization and Molecular Topology of Linear Semicrystalline Polymers: Simulation of Uni- and Bimodal Molecular Weight Distribution Systems. Macromolecules, 2019, 52, 4196-4208.	4.8	27
9	Micro/macro-stress relationship and local stress distribution in polyethylene spherulites upon uniaxial stretching in the small strain domain. Polymer, 2018, 140, 215-224.	3.8	23
10	Three-dimensional constitutive model for the description of high molecular weight semicrystalline polymers over a large range of temperatures and strain rates: Application to Ultra High Molecular Weight PolyEthylene. EPJ Web of Conferences, 2018, 183, 01016.	0.3	3
11	Impact of carbon nanotube prelocalization on the ultra-low electrical percolation threshold and on the mechanical behavior of sintered UHMWPE-based nanocomposites. Polymer, 2017, 111, 204-213.	3.8	38
12	Critical stress and thermal activation of crystal plasticity in polyethylene: Influence of crystal microstructure and chain topology. Polymer, 2017, 118, 192-200.	3.8	30
13	Role of the Intercrystalline Tie Chains Network in the Mechanical Response of Semicrystalline Polymers. Physical Review Letters, 2017, 118, 217802.	7.8	50
14	Crystallization of finite-extensible nonlinear elastic Lennard-Jones coarse-grained polymers. Physical Review E, 2017, 96, 052502.	2.1	29
15	Amorphous Phase Modulus and Micro–Macro Scale Relationship in Polyethylene via <i>in Situ</i> SAXS and WAXS. Macromolecules, 2015, 48, 2149-2160.	4.8	73
16	Plastic Deformation Mechanisms of Semicrystalline and Amorphous Polymers. ACS Macro Letters, 2015, 4, 147-150.	4.8	89
17	Mechanisms of Chain Reentanglement during the Sintering of UHMWPE Nascent Powder: Effect of Molecular Weight. Macromolecules, 2015, 48, 5328-5338.	4.8	62
18	Correlation of structure and mechanical response in solid-like polymers. Journal of Physics Condensed Matter, 2015, 27, 194131.	1.8	16

OLIVIER LAME

#	Article	IF	CITATIONS
19	In-situ SAXS study of the mesoscale deformation of polyethylene in the pre-yield strain domain: Influence of microstructure and temperature. Polymer, 2014, 55, 1223-1227.	3.8	45
20	Nanoscale Buckling in Lamellar Block Copolymers: A Molecular Dynamics Simulation Approach. Macromolecules, 2013, 46, 7853-7864.	4.8	23
21	Nanoscale buckling deformation in layered copolymer materials. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 680-685.	7.1	89
22	Influence of Tie and Loop Molecules on the Mechanical Properties of Lamellar Block Copolymers. Macromolecules, 2012, 45, 8445-8452.	4.8	42
23	Influence of annealing treatments on the essential work of fracture of biaxially drawn poly(ethylene) Tj ETQq1 1 (0.784314 3.1	rgBT /Overlo
24	A re-examination of the elastic modulus dependence on crystallinity in semi-crystalline polymers. Polymer, 2011, 52, 4899-4909.	3.8	87
25	Predictors of Cavitation in Glassy Polymers under Tensile Strain: A Coarseâ€Grained Molecular Dynamics Investigation. Macromolecular Theory and Simulations, 2011, 20, 826-836.	1.4	56
26	Small strain behavior of polyethylene: <i>In situ</i> SAXS measurements. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1535-1542.	2.1	54
27	Mechanical testing of glassy and rubbery polymers in numerical simulations: Role of boundary conditions in tensile stress experiments. Journal of Chemical Physics, 2009, 131, 014904.	3.0	34
28	Polymer chain generation for coarse-grained models using radical-like polymerization. Journal of Chemical Physics, 2008, 128, 234904.	3.0	49