
Oliver Weinheimer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10618092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extraction of Airways From CT (EXACT'09). IEEE Transactions on Medical Imaging, 2012, 31, 2093-2107.	8.9	173
2	Paired Inspiratory/Expiratory Volumetric Thin-Slice CT Scan for Emphysema Analysis. Chest, 2005, 128, 3212-3220.	0.8	114
3	Fibroblast Activation Protein–Specific PET/CT Imaging in Fibrotic Interstitial Lung Diseases and Lung Cancer: A Translational Exploratory Study. Journal of Nuclear Medicine, 2022, 63, 127-133.	5.0	72
4	About Objective 3-D Analysis of Airway Geometry in Computerized Tomography. IEEE Transactions on Medical Imaging, 2008, 27, 64-74.	8.9	66
5	Automatic Airway Analysis on Multidetector Computed Tomography in Cystic Fibrosis. Journal of Thoracic Imaging, 2013, 28, 104-113.	1.5	66
6	MDCT assessment of airway wall thickness in COPD patients using a new method: correlations with pulmonary function tests. European Radiology, 2008, 18, 2731-2738.	4.5	65
7	Multi-detector CT of the Chest. Journal of Computer Assisted Tomography, 2006, 30, 460-468.	0.9	54
8	Assessment of the relationship between lung parenchymal destruction and impaired pulmonary perfusion on a lobar level in patients with emphysema. European Journal of Radiology, 2007, 63, 76-83.	2.6	54
9	Quantitative analysis of emphysema in 3D using MDCT: Influence of different reconstruction algorithms. European Journal of Radiology, 2008, 65, 228-234.	2.6	47
10	Pulmonary Emphysema in Cystic Fibrosis Detected by Densitometry on Chest Multidetector Computed Tomography. PLoS ONE, 2013, 8, e73142.	2.5	40
11	Visual vs Fully Automatic Histogram-Based Assessment of Idiopathic Pulmonary Fibrosis (IPF) Progression Using Sequential Multidetector Computed Tomography (MDCT). PLoS ONE, 2015, 10, e0130653.	2.5	40
12	Fully Automated Pulmonary Lobar Segmentation: Influence of Different Prototype Software Programs onto Quantitative Evaluation of Chronic Obstructive Lung Disease. PLoS ONE, 2016, 11, e0151498.	2.5	35
13	Quantitative CT detects progression in COPD patients with severe emphysema in a 3-month interval. European Radiology, 2020, 30, 2502-2512.	4.5	30
14	Simultaneous Assessment of Airway Instability and Respiratory Dynamics with Low-Dose 4D-CT in Chronic Obstructive Pulmonary Disease: A Technical Note. Respiration, 2014, 87, 294-300.	2.6	29
15	Variation of Densitometry on Computed Tomography in COPD – Influence of Different Software Tools. PLoS ONE, 2014, 9, e112898.	2.5	27
16	Quantitative CT detects changes in airway dimensions and air-trapping after bronchial thermoplasty for severe asthma. European Journal of Radiology, 2018, 107, 33-38.	2.6	27
17	Effect of smoking cessation on quantitative computed tomography in smokers at risk in a lung cancer screening population. European Radiology, 2018, 28, 807-815.	4.5	25
18	Validation of automated lobe segmentation on paired inspiratory-expiratory chest CT in 8-14 year-old children with cystic fibrosis. PLoS ONE, 2018, 13, e0194557.	2.5	25

OLIVER WEINHEIMER

#	Article	IF	CITATIONS
19	Computed Tomography Imaging for Novel Therapies of Chronic Obstructive Pulmonary Disease. Journal of Thoracic Imaging, 2019, 34, 202-213.	1.5	23
20	Accuracy of automatic airway morphometry in computed tomography—Correlation of radiological–pathological findings. European Journal of Radiology, 2012, 81, 183-188.	2.6	19
21	Longitudinal airway remodeling in active and past smokers in a lung cancer screening population. European Radiology, 2019, 29, 2968-2980.	4.5	19
22	Quantification of pulmonary perfusion abnormalities using DCE-MRI in COPD: comparison with quantitative CT and pulmonary function. European Radiology, 2022, 32, 1879-1890.	4.5	18
23	Influence of Pixel Size on Quantification of Airway Wall Thickness in Computed Tomography. Journal of Computer Assisted Tomography, 2009, 33, 725-730.	0.9	15
24	Influence of exposure parameters and iterative reconstruction on automatic airway segmentation and analysis on MDCT—An ex vivo phantom study. PLoS ONE, 2017, 12, e0182268.	2.5	15
25	Quantification of Lung Volume at Different Tidal Volumes and Positive End-Expiratory Pressures in a Porcine Model by Using Retrospective Respiratory Gated 4D-Computed Tomography. Investigative Radiology, 2008, 43, 461-469.	6.2	14
26	Improved detection of air trapping on expiratory computed tomography using deep learning. PLoS ONE, 2021, 16, e0248902.	2.5	13
27	Fully automated lobe-based airway taper index calculation in a low dose MDCT CF study over 4 time-points. Proceedings of SPIE, 2017, , .	0.8	12
28	Repeated Low-Dose Computed Tomography in Current and Former Smokers for Quantification of Emphysema. Journal of Computer Assisted Tomography, 2010, 34, 933-938.	0.9	10
29	Influence of Inspiratory/Expiratory CT Registration on Quantitative Air Trapping. Academic Radiology, 2019, 26, 1202-1214.	2.5	10
30	INVESTIGATION OF RETROSPECTIVE RESPIRATORY GATING TECHNIQUES FOR ACQUISITION OF THIN-SLICE 4D-MULTIDETECTOR-COMPUTED TOMORGRAPHY (MDCT) OF THE LUNG: FEASIBILITY STUDY IN A LARGE ANIMAL MODEL. Experimental Lung Research, 2006, 32, 395-412.	1.2	6
31	Influence of acquisition settings and radiation exposure on CT lung densitometry—An anthropomorphic ex vivo phantom study. PLoS ONE, 2020, 15, e0237434.	2.5	6
32	Echo <scp>Timeâ€Dependent</scp> Observed Lung <scp>T₁</scp> in Patients With Chronic Obstructive Pulmonary Disease in Correlation With Quantitative Imaging and Clinical Indices. Journal of Magnetic Resonance Imaging, 2021, 54, 1562-1571.	3.4	6
33	Changes of Emphysema Parameters over the Respiratory Cycle During Free Breathing: Preliminary Results Using Respiratory Gated 4D-CT. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2017, 14, 597-602.	1.6	5
34	Differences of airway dimensions between patients with and without bronchiolitis obliterans syndrome after lung transplantation—Computer-assisted quantification of computed tomography. European Journal of Radiology, 2016, 85, 1414-1420.	2.6	3
35	Detection of inspiratory recruitment of atelectasis by automated lung sound analysis as compared to four-dimensional computed tomography in a porcine lung injury model. Critical Care, 2018, 22, 50.	5.8	3
36	Tissue expansion of lung bronchi due to tissue processing for histology – A comparative analysis of paraffin versus frozen sections in a pig model. Pathology Research and Practice, 2019, 215, 152396.	2.3	3

#	Article	IF	CITATIONS
37	Optimizing airway wall segmentation and quantification by reducing the influence of adjacent vessels and intravascular contrast material with a modified integral-based algorithm in quantitative computed tomography. PLoS ONE, 2020, 15, e0237939.	2.5	3
38	A calibration CT miniâ€lungâ€phantom created by 3â€D printing and subtractive manufacturing. Journal of Applied Clinical Medical Physics, 2021, 22, 183-190.	1.9	3
39	Improving pulmonary lobe segmentation on expiratory CTs by using aligned inspiratory CTs. , 2019, , .		3
40	Comparison of histological and computed tomographic measurements of pig lung bronchi. ERJ Open Research, 2020, 6, 00500-2020.	2.6	1